
LATEX, VOL. XX, NO. X, XX 2023 1

Graph Exploration with Embedding-Guided Layouts
Leixian Shen*, Zhiwei Tai*, Enya Shen, and Jianmin Wang

Abstract—Node-link diagrams are widely used to visualize graphs. Most graph layout algorithms only use graph topology for aesthetic goals (e.g.,
minimize node occlusions and edge crossings) or use node attributes for exploration goals (e.g., preserve visible communities). Existing hybrid methods
that bind the two perspectives still suffer from various generation restrictions (e.g., limited input types and required manual adjustments and prior
knowledge of graphs) and the imbalance between aesthetic and exploration goals. In this paper, we propose a flexible embedding-based graph
exploration pipeline to enjoy the best of both graph topology and node attributes. First, we leverage embedding algorithms for attributed graphs to encode
the two perspectives into latent space. Then, we present an embedding-driven graph layout algorithm, GEGraph, which can achieve aesthetic layouts
with better community preservation to support an easy interpretation of the graph structure. Next, graph explorations are extended based on the
generated graph layout and insights extracted from the embedding vectors. Illustrated with examples, we build a layout-preserving aggregation method
with Focus+Context interaction and a related nodes searching approach with multiple proximity strategies. Finally, we conduct quantitative and qualitative
evaluations, a user study, and two case studies to validate our approach.

Index Terms—Graph Embedding, Graph Layout, Graph Exploration.

F

1 INTRODUCTION

Graphs are widely used to encode data with topology structures
(e.g., biological networks [6], [22], social networks [81], [5],
and deep learning dataflows [80]). Compared with numerical
assessment, visualizing graphs as node-link diagrams can depict
the overall graph structure for more intuitive and efficient analysis.

Layout is a fundamental task for node-link diagram exploration.
Over the years, various promising layout methods have been de-
signed to visualize graphs, such as force-directed approaches [19],
[68], dimensionality reduction-based algorithms [40], [8], [93],
deep learning-based methods [76], [43], and multi-level ap-
proaches [93], [29]. However, most layout methods are either
topology-driven or attribute-driven, which focus too much on one
side for a certain goal. Graph topology contains connection infor-
mation between nodes and is important for aesthetic presentation
(e.g., with few node occlusions and edge crossings) [19], [30], [17].
Node attributes incorporate various additional information about
the node and are usually used for graph clustering, which partitions
nodes into disjoint communities, and nodes of the same community
share some commonalities [35]. A pure attribute-driven layout can
be overly compact as it does not consider the topology feature.
Ignoring the node attributes may miss the important community
information for analytic goal. In comparison, integrating the two
crucial elements for graph layout has received relatively little
attention in current research [24], [18], [12], [55], [38].

According to our survey, there have been several prior efforts
that attempt to integrate the two perspectives for graph visualization.
However, these hybrid methods have two major issues in terms
of layout quality and generation restriction. For the layout quality,
most middle-ground approaches combine the two elements in a
hierarchical form [35], [62], [2]. For example, Itoh et al.[35] and
OnionGraph [62] first use node attributes to calculate clusters and
then adopt a layout algorithm to position the clusters. The target of
community preservation prevails in these approaches, and aesthetic

• All authors are from Tsinghua University, Beijing, China. E-mail:
{slx20@mails., tzw20@mails.,shenenya@, jimwang@}tsinghua.edu.cn.

• * Both authors contributed equally to the paper.

Manuscript received XX XX, 2023; revised XX XX, 2023.

goals play a relatively weak role. Unlike the loosely-coupled
binding style, GraphTSNE [46] leverages Graph Convolutional
Network (GCN) with a modified t-SNE loss to encode graph
connectivity and node attributes together. However, the produced
layouts can not reveal visible communities, which will be further
discussed in the evaluation. For the generation restriction, some
approaches depend on user interaction to adjust the layout [65],
[66], [36], which is usually a time-consuming process. For instance,
MagnetViz [66] allows users to manipulate virtual magnets, which
represent a particular attribute and can attract nodes that meet a set
of associated criteria. However, only a few attributes can be applied
in one manipulation, and it requires users’ prior knowledge of the
graph structure. In addition, many methods also have specific input
restrictions. For example, GraphTSNE [46] can only accept graphs
with multiple attributes as input but fail to handle nodes with a
single or without attribute. MVN-Reduce [49] and JauntyNets [36]
only handle quantitative attributes and are only for dimensionality
reduction-based and force-based layout algorithms, respectively. In
general, the above attempts still have shortcomings about layout
quality (e.g., imbalance between aesthetic and exploration goals)
and generation restriction (e.g., limited input types and required
manual adjustments and prior knowledge of graphs). So our target
is to integrate graph topology and attributes in a flexible and organic
manner to avoid the restrictions and better balance aesthetic and
exploration goals.

Recently, graph embedding has proven effective in obtaining
high-level feature vectors of graphs [47], [21], [92]. An essential
category is based on random walks (e.g., node2vec [27] and Deep-
Walk [57]), which represents the graph as a set of sampled random
walking paths. These methods usually require less computational
cost and are proven flexible and effective. This inspires us to
leverage graph embedding to bind topology and node attributes for
layout and graph exploration.

In this work, we introduce a flexible pipeline (Fig. 1) for
undirected graph exploration that leverages graph embedding
to extract high-level features of attributed graphs, power better
layout results, and guide graph exploration applications. Layout
plays a vital role in the pipeline to visualize the underlying
data insights for further exploration. In the pipeline, we include

LATEX, VOL. XX, NO. X, XX 2023 2

Fig. 1: Embedding-based graph exploration pipeline. The graph embedding algorithm encodes attributed graphs into low-dimensional
vectors, from which can extract rich data insights (e.g., cluster, central nodes, and similarity. The embedding-guided layout method
integrates similarities and connections between nodes to produce aesthetic and community-aware layouts. The generated layout, coupled
with the extracted insights, enables various graph exploration applications (e.g., node aggregation and related nodes searching).

an embedding-driven graph layout algorithm, GEGraph (GE is
short for Graph Embedding). GEGraph combines the similarity
information between nodes in latent space and the connection
information of graph structure to produce visually appealing (e.g.,
with few node occlusions) and community-aware graph layouts,
balancing aesthetic and exploration goals. In addition, GEGraph
is self-automatic and can adapt to graphs with different attribute
types. Based on the high-quality layout, we integrate the data
insights extracted from the embedding vectors to design two
exploration examples: layout-preserving graph aggregation and
multi-strategy related nodes searching. In general, our contributions
are summarized as follows:
• We propose a flexible embedding-based graph exploration

pipeline that extracts high-level features and data insights of
attributed graphs to power layout and exploration.

• We design an embedding-driven graph layout algorithm, which
can bind graph topology and node attributes to produce aesthetic
and community-aware layouts.

• We evaluate the effectiveness of our approach quantitatively and
qualitatively by comparing it with popular layout methods, as
well as a user study and two case studies with real-world data.

2 RELATED WORK

Our work draws upon existing advances in three perspectives, i.e.,
graph layout, graph embedding, and graph exploration.

2.1 Graph Layout

Node-link diagram layout algorithms can be briefly divided into
topology-driven, attribute-driven, and hybrid approaches [55].

Topology-driven. Topology-driven layout algorithms draw
graphs based solely on graph topology. One of the classic families
is force-directed, which generates a force-balanced graph layout by
modeling nodes and edges as physical objects. One representative

example is the Fruchterman-Reingold (F-R) algorithm [19], which
defines a simplified charge-spring model and performs well with
simplicity and scalability. Abundant algorithms are later proposed
by encoding extra information into the physical model [37], [90],
[53], [3], [68], [84]. For example, most recently, PH [68] leverages
the persistent homology features of graphs for interactive layout
manipulation with a novel bar-list design. Another type is dimen-
sionality reduction-based methods, which leverage dimensionality
reduction algorithms to project data onto a 2D space. For instance,
PivotMDS [8] is a sampling-based approximation to classical
multidimensional scaling (MDS) by assigning a subset of nodes
as pivots. HDE [31] is similar to PivotMDS but uses principal
component analysis (PCA) for dimensionality reduction. Recently,
tsNET leverages t-distributed Stochastic Neighbor Embedding (t-
SNE) [40] with a modified cost function to encode the graph as a
2D distance matrix. In recent years, advances in deep learning are
introduced to power automatic graph layout, which performs well
on learning the graph topology and drawing style [76], [43], [42].
However, they are usually limited by the graph size and are not
scalable to solve universal problems. In addition, aiming at reducing
computation time, multi-level methods decompose large graphs into
coarser graphs. They first lay out the coarsest graphs with a force-
directed [75], [29], [20] or dimension reduction-based method [13],
[93] and then use the vertex position as the initialization for the
next finer graph. Most recently, DRGraph [93] enhances the non-
linear dimensionality reduction scheme using a sparse distance
matrix, the negative sampling technique, and a multi-level layout
scheme. The scheme comprises coarsening, coarsest graph layout,
and refinement. In general, although topology-driven algorithms
are effective, they only consider the graph topology but ignore its
important node attributes.

Attribute-Driven. Attribute-driven layouts adopt positions of
nodes to encode attribute information [55]. The most common
strategy is to alter the visual appearance (e.g., color, size, and
shape) of the graph elements through on-node or on-edge encoding.

LATEX, VOL. XX, NO. X, XX 2023 3

For instance, Neuweger et al. [52] make use of on-node encoding
by means of color, where metabolic pathways are overlaid with
multiple attributes (metabolite concentrations). There are also a set
of biological systems that adopt embedded charts (e.g., bar charts,
box plots, etc.) as nodes to visualize multivariate graphs [22].
Faceting is also a common case in attribute-driven layout, which
groups nodes by a categorical attribute and places nodes in each
group with other methods [58], [23], [64], [4], [56]. For instance,
Shneiderman et al. [63] compute graph layouts by semantic
substrates, which are non-overlapping regions, and the node
placement is based on the attributes. Another case is attribute-driven
positioning, which sets the nodes’ position by parts of attributes
(often numerical) [16]. For example, GraphDice [5] proposes the
scatterplot matrix design to manipulate attributes in social networks.
Doerk et al. [16] set the node positions in space by attribute-based
dimension reduction. Additionally, graphTPP [26], [25] emphasizes
using attributes and clustering for graph layout, which can achieve
a clear clustered structure. Attribute-driven positioning is also
commonly used in spatial networks [70], [28] and graphs with
1D attribute (e.g., time [16] and genomic coordinates [51], [41]).
Generally, attribute-driven methods mostly make superficial use of
attribute information and neglect the vital topological structure.

Hybrid. Hybrid approaches attempt to use comprehensive infor-
mation to aid graph layout. For example, MagnetViz [66] arranges
graph nodes with a force-directed algorithm and provides users with
virtual magnets, which acts as a specific attribute and can attract
nearby nodes that meet certain associated criteria. JauntyNets [36]
places attribute nodes on a circle around the graph. Topological
nodes with attribute values above a specific threshold are linked
with the corresponding attribute nodes via node-to-attribute edges
to integrate the attribute information into the force-based layout.
However, the quality of layouts depends on users’ modification of
parameters, and the two methods require users’ prior knowledge of
the graph. GraphTSNE [46] trains a Graph Convolutional Network
(GCN) on a modified t-SNE loss. It accounts for both graph
connectivity and node attributes but suffers from high training
costs and input restrain (must have multiple attributes). MVN-
Reduce [49] combines the two aspects into a unified model to act as
the input of dimensionality reduction-based approaches. However,
it only considers quantitative attributes. Similarly, JauntyNets can
only handle numerical attributes and only apply to force-based
approaches. In addition to general layouts, hybrid approaches are
also used to generate other structural information. In detail, Itoh et
al. [35] combine structural neighborhood and attribute similarity to
generate key-node-separated graph clusters and leverage the stress
minimization layout algorithm to calculate the positions of vertices.
OnionGraph [62] enables node aggregation based on either attribute,
topology, or their hierarchical combination. Wu and Takatsuka [82],
[83] leverage spherical Self-Organizing Map (SOM) to group nodes
with similar attributes to adjacent areas on the circular layout.
Although these approaches are a promising start to combine the
topology and attribute information, they still have drawbacks in
terms of layout quality and generation restriction. In this paper, we
attempt to propose a flexible graph exploration pipeline based on
graph embedding to avoid the generation restrictions and produce
more attractive and community-aware visualizations.

2.2 Graph Embedding

Existing embedding methods can be divided into structure-first and
attribute-first [10].

Structure-first. DeepWalk [57] first leverages random walk to
convert a graph into paths and then adopts the language model to
generate node embedding. LINE [69] learns node representations by
modeling the first-order and second-order proximity. Struc2vec [59]
encodes the role similarity of node structure into a multi-layer
network, where the weight of edges in each layer is determined
by the structural role difference of the corresponding scale.
Role2vec [1] captures the behavioral roles of nodes with structurally
similar neighborhoods (e.g., connectivity and subgraph patterns).
Node2vec [27] presents a new random walk strategy to interpolate
between breadth-first sampling and depth-first sampling. Though
these embedding methods can effectively convert graphs into high-
level vectors, they only consider the graph topology.

Attribute-first. TADW [85] extends DeepWalk to incorporate
a node-context matrix. HSCA [88] integrates homophily, topology
structure, and node content information to ensure effective network
representation learning. However, the two matrix factorization-
based methods are time-and-space-consuming when dealing with
large feature matrices. SNE [47] includes two deep neural graph
models which are used to process structure and attribute informa-
tion in the embedding layer. DANE [21] designs two deep neural
graph models to separate the topology and node attributes and
then applies joint distribution to optimize the result. DVNE [92]
learns a Gaussian distribution in the Wasserstein space as the
latent node representation. BANE [86] defines a Weisfeiler-Lehman
proximity matrix to capture data dependence between node links
and attributes. MetaGraph2Vec [89] and Metapath2vec [15] per-
form scalable representation learning in heterogeneous information
networks through meta-path-guided random walks. The above
methods can capture richer graph feathers but require a long training
time and lacks good scalability.

Considering the diverse graph visualization and exploration
scenarios that depend on graph topology and node attributes at
different levels, we choose a flexible structure-first embedding
approach, node2vec, and extend it to integrate node attributes in
the random work process.

2.3 Graph Exploration

There are various tasks associated with graphs (e.g., correlate,
identify, compare, and categorize) [44], [38]. With the embedding
vectors, we can extract various intent-oriented insights and design
interactive applications for data exploration.

For example, in high level, aggregation is a practical approach
to reduce the complexity of graph layout by creating an overview of
the graph with cluster information [55]. PivotGraph [79] aggregates
nodes by the attributes, and the size of aggregated nodes reflects the
number of nodes with such attributes. Elzen and Wijk [71] design
an approach to provide an overall view for large geographical
graphs. Tensorflow [80] aggregates the mathematical operations
or functions to a module to help increase the interpretability
of users’ models. ASK-GraphView [73] enables clustering and
interactive navigation of large-scale graphs. To interactively explore
the aggregated nodes, Herman et al. [33] introduce Focus+Context,
which aims to show the overall and detailed view in the same area
to reveal the graph structure. In addition, related nodes searching is
a common task in graph exploration with the similarity information.
Chen et al. [11] propose a structure-based suggestive exploration
approach by encoding nodes with vectorized representations. It can
identify similar structures in a large network, by which users can
interact with multiple similar structures. However, it only encodes

LATEX, VOL. XX, NO. X, XX 2023 4

the graph topology information. We propose an embedding-based
approach with three searching strategies.

Our pipeline supports highly customizable graph exploration
applications based on the embedding vectors and graph layout. We
illustrate the scalability of the pipeline with two examples: graph
aggregation and related nodes searching. Furthermore, Pretorius
et al. [38] present a framework of tasks for multivariate networks.
We hope that our pipeline and designed examples can inspire more
interesting graph exploration applications for these analytic tasks,
even with different interaction modalities [67], [61], [9].

3 PIPELINE

In this paper, we contribute an embedding-based pipeline for graph
exploration that considers both graph topology and node attributes,
as shown in Fig. 1. The pipeline is flexible, working as follows:
we first leverage graph embedding algorithms to convert attributed
graphs (A) into low-dimensional vectors (B), which support more
complex data transformation types. Then a set of valuable data
insights (C) can be extracted from the embedding results such
as community clusters, central nodes that are representatives
for communities, similarity between nodes, etc. The insights are
essential for the graph layout and exploration applications. Next,
we design an embedding-driven graph layout algorithm, GEGraph,
that integrates the similarity matrix generated from the embedding
vectors with the adjacency matrix of the graph topology to enhance
existing graph layout method to achieve aesthetic and community-
aware graph layouts (D). With the generated layout and extracted
insights at hand, we can develop various interesting applications
(E) for interactive graph exploration such as node aggregation and
related nodes searching.

In our instantiation, for the graph embedding algorithm, we
extend node2vec [27], a widely used topology-based embedding
method, to node2vec-a (a is short for attribute), by integrating
node attributes as virtual nodes into the random walk process. The
design logic links the two elements in a flexible manner, which will
be discussed in Section 4. For the layout algorithm, we select the
F-R algorithm [19] as a basis for the prototype of GEGraph due
to its wide applications, ease of implementation and integration,
which will be discussed in Section 5. On top of the generated
layout, to demonstrate the usability of the exploration pipeline,
we design a layout-preserving node aggregation application (with
central nodes that are representatives for communities) and a multi-
strategy related nodes searching application (with node similarity),
which will be discussed in Section 6.

The modules are loosely coupled, and the pipeline allows for
a high degree of customisability. On the one hand, users can
replace the embedding and layout algorithm with other advanced
or proprietary approaches to satisfy their certain goals; on the
other hand, users can apply various data mining methods to
extract insights from the embedding-based vectors and design
their interactive graph exploration applications by the intersection
of multiple areas (e.g., visualization, human-computer interaction,
and data science). We also expect more interesting applications
with different graph insights to be designed in the future.

4 ATTRIBUTED GRAPH EMBEDDING

In this section, we leverage attributed graph embedding to integrate
graph topology and node attributes in a flexible manner and
transform graph features into low-dimensional vectors for graph
visualization and exploration.

u x2

x1 x3

v

a1

a4

a2

a2

a3

u x2

x1 x3

v

a1

a4

a2

a2

a3

a2

α=1

α=1/p α=1/r

α=1/q

a2

Fig. 2: Illustration of modeling graphs with node attributes. Inspired
by node2vec [27], by setting p, q, and r, random walking paths
based on local structure, global structure, and node attribute can be
generated, revealing different proximities.

4.1 Problem Definition

An attributed graph is formally denoted as G = (V,E,Λ), where V
and E are sets of nodes and edges, respectively. Λ = {α1, ...,αm} is
the set of attributes associated with the nodes in V . Each node vi in
V corresponds to a vector [α1(vi), ...,αm(vi)], where α j(vi) is the
attribute value of vi on attribute α j. The goal of embedding is to
generate a mapping function from the bipartite graph to the feature
representation f : G→ Rd , where d is the dimension number of
feature vectors.

In graph visualizations, edges between nodes reflect the
structural connections. Likewise, if two nodes have the same
values on specific attributes, it is intuitive that these nodes have a
semantic connection, which is an important relationship in graph
visualization. So we believe that attributes can work as another
kind of “edge" in graphs. However, as the dependency on topology
and attributes varies in diverse graph visualization and exploration
scenarios, we confront a challenge in applying the embedding
algorithm for graph visualization: how to flexibly extract graph
features in different perspectives, such as local structure, global
structure, and node attributes.

4.2 Graph Modeling

Inspired by node2vec [27], a widely used graph embedding method,
which introduces two notions of a node’s neighborhood for a
flexible biased random walk procedure, we attempt to extend
node2vec to node2vec-a by integrating attributes into the random
walk process and providing flexibility in the transition between
attribute-based and structure-based features for graph visualization.

To this end, we model the graph by extending the definition
of node and edge. As shown in Fig. 2, the attributed graph is
extended by taking attributes {α1, ...,αm} as the virtual nodes
{vα1, ...,vαm}: if node vi has attribute α j, there will generate a
virtual edge between vi and vα j. The extended graph is denoted
as G′ = (V ′,E ′,Λ′), where V ′ is the union set of real nodes and
virtual attribute nodes, and E ′ is the union set of real edges and
virtual edges. Λ′ is the same as Λ. Take attribute a2 in Fig. 2 as an
example, the attribute a2 shared by v and x2 is added into the graph
as a virtual node a2, and edges ev,a2 and ex2,a2 are established. After
the first step walking from u to v, subsequent steps are computed
according to walking parameters.

In addition, the node attributes can be mainly divided into
nominal and quantitative types. Nominal attributes can be directly
converted into virtual nodes in the model. For quantitative attributes,
we leverage the Chi Merge algorithm [45] to discretize them into
bins and adopt the mean value to represent attributes in the bin.
Then they can be processed as nominal ones.

LATEX, VOL. XX, NO. X, XX 2023 5

4.3 Random Walk Strategy

Given a source node u and a fixed random walk length l, the ith
node in the path ci, which starts with c0 = u, is generated by the
following distribution:

P(ci = x|ci−1 = v) =

{
πvx
Z , i f (v,x) ∈ E ′

0, otherwise
(1)

where πvx is the unnormalized transition probability between
nodes v and x, and Z is the normalizing constant. Since E ′ includes
extended attribute edges, the random walk will take node attributes
into account. A significant problem here is how to define the
probability of random walk for virtual attribute nodes.

Let VΛ ⊂V ′ denote the set of virtual attribute nodes in G′, and
α denote the search bias of the next step from the source node
u to the target node x. Formally, inspired by node2vec [27], the
transition probability πvx is designed as:

πvx =

{
1
r , i f v or x ∈VΛ

α(v,x), otherwise
(2)

α(v,x) =

1
p , i f dux = 0

1, i f dux = 1
1
q , i f dux = 2

(3)

where p controls the likelihood of walking to local structure
nodes that are interconnected and belong to the same community
under the homophily hypothesis [87], q controls the likelihood
of walking to global structure nodes that play similar structural
roles in different communities under the structural equivalence
hypothesis [32], and r decides the bias between topology and node
attributes, which extends the definition of graph in node2vec [27].
dux is the shortest distance between the source node u and node x.

Generally, we further divide the proximity in the random
walking process between nodes into three categories:
• Local structural proximity: If p < min(q,r,1), the probability

of returning from the source node to the previous step increases.
Thus, the random walking process is closer to local structure-
based, which encourages moderate exploration.

• Global structural proximity: If q < min(p,r,1), the probability
of walking from the source node to other distant real nodes
increases. Thus, the random walking process is closer to global
structure-based, which encourages outward exploration.

• Attribute proximity: If r < min(p,q,1), the probability of
walking from the source node to virtual attribute nodes increases.
Thus, the random walking process is closer to attribute-based,
which encourages property-preserving exploration.

By adjusting walking parameters p, q, and r, the topology
and attribute information can be encoded into low-dimensional
vectors with different priorities in the embedding process, revealing
different proximities for diverse visualization and exploration
scenarios. Finally, we adopt the Skip-gram model to learn the
latent representation of the graph.

5 EMBEDDING-DRIVEN GRAPH LAYOUT

After embedding, both the topology and attribute information are
mapped into feature vectors. This section will discuss how the graph
layout approach, GEGraph, evolves from the F-R algorithm [19] to
enhance graph layout with embedding results.

5.1 F-R Algorithm

F-R [19] is a typical instance of the force-directed layout algorithm.
The design of attractive and repulsive force is the core of force-
directed layout algorithms. In the F-R algorithm, attractive force
fa(d) is calculated as:

fa(d) =
d2

k
(4)

where d is the current distance of two nodes, and k is a constant to
control the minimal gaps between nodes. Repulsive force fr(d) is
calculated as:

fr(d) =−
k2

d
(5)

Applying the F-R algorithm is an iterative process, and the resultant
force applied on each node makes an offset of position in each
iteration. It repeats until the nodes achieve convergence. The F-R
algorithm can generate visually appealing layouts and is easy to
implement and integrate with our method. So we choose F-R as
the foundation for the prototype. Fig. 3 (a) shows the output of the
F-R algorithm with the Les Misérables [68] dataset, which is the
baseline of our layout algorithm design.

5.2 Dimension Reduction of Feature Vectors

The graph layout process can be viewed as computing a 2D
dimensional position vector for each node. So we first try to directly
leverage dimension reduction technologies to map the embedding
results into a 2D space. Inspired by recent work [91], we apply
t-SNE [72] to the high-dimensional vectors. As Fig. 3 (b) shows,
the resulting layout can reveal proper node distribution information,
where node communities can be distinguished intuitively. However,
edges in the graph are mostly crossed with each other inside
communities, making the layout less aesthetic than Fig. 3 (a).
Due to the fact that whether nodes are linked or not is ignored
in the layout process, the edge crossing problem in Fig. 3 (b) is
predictable. Nevertheless, this layout may be useful when there is
no need to display edges, such as node classification scenarios.

5.3 Layout with Similarity Matrix

We later adopt the F-R algorithm to process the embedding vectors.
For each node pair in the graph, the distance between corresponding
embedding vectors can be computed by euclidean distance. So we
can obtain a n×n similarity matrix Se, where the values represent
the similarity of two nodes. Based on the minimum and maximum
distances in the similarity matrix, each value in Se is further
normalized into the range [0, 1] to generate SE . Then the final
similarity (normalized distances) of nodes a and b is formed as:

similarity(a,b) = 1−SE(a,b) (6)

If similarity(a,b) is larger than similarity(a,c), node a can be
considered more similar to node b than node c. F-R can process
graphs with or without directions and edge weights. As described
in Section 5.1, it takes the adjacency matrix as input. Values in the
adjacency matrix indicate the weights of edges and represent the
topological connections between nodes. In fact, both the adjacency
matrix and similarity matrix are shaped as n×n and indicate node
connectivity and distance information. So we try to replace the
adjacency matrix with the similarity matrix as the input of F-R.
However, as shown in Fig. 3 (c), the output is a hairball-like
structure, and all the nodes distribute uniformly.

LATEX, VOL. XX, NO. X, XX 2023 6

(a) (b) (c) (d) (e) (f)

Fig. 3: Evolution of the embedding-driven graph layout algorithm. (a) is the initial layout of the Les Misérables dataset generated by the
F-R algorithm. (b) is generated by directly using the dimension reduction algorithm, t-SNE, on the embedding vectors. (c) is the result of
treating the similarity matrix as an adjacency matrix with F-R. After applying truncation on the similarity matrix, (d) is generated in
the same way as (c). (e) is the result after integrating the similarity matrix and original adjacency matrix. (f) is the layout with node
classification considered during the integration of similarity matrix and adjacency matrix.

5.4 Truncation Operation on Similarity Matrix

By treating the similarity matrix as an adjacency matrix, the graph
can be regarded as a new complete graph with the same nodes.
If two nodes are far from each other in the embedding space, the
corresponding value in the similarity matrix is small, indicating that
the two nodes are less semantic related. Nevertheless, their impact
on the simulated annealing process in F-R can be significantly
magnified during the iterations, making the nodes in the layout
separate uniformly. Therefore, small values in the similarity matrix
should be filtered out. To this end, we introduce a truncation
function t(x) to process the similarity matrix:

t(x) =

{
0, x < te
x, otherwise

(7)

where te is a parameter to control the threshold. Fig. 3 (d) is the
layout result after applying the truncation function, where nodes
in each community gather too concentrated while some others are
isolated. This is because the similarity matrix generates from feature
vectors, so the layout entirely relies on the embedding results.
Linked node pairs with low vector similarity may be separated
from each other.

5.5 Embedding-Enhanced Adjacency Matrix

Embedding and truncation weaken the original topology infor-
mation, which is also a major problem of dimension reduction-
based methods. Based on the attempts above, we believe that
the original topology structure should be considered. Since the
adjacency matrix represents the topology structure, we propose
combining the adjacency matrix and similarity matrix in the layout
algorithm. With the same size, the two matrices can be integrated
by the weighted sum after normalization. So a new matrix named
embedding-enhanced adjacency matrix N is computed as:

N = w×A+(1−w)×S (8)

where w is the weight parameter. A and S are the adjacency matrix
and similarity matrix, respectively. As shown in Fig. 4, after the
weighted sum, we apply normalization and truncation on N as
described in Section 5.4 to generate the final embedding-enhanced
adjacency matrix. By adjusting w, the layout result can strike a
balance between Fig. 3 (a) and Fig. 3 (c). If w < 0.5, the similarity
information from graph embedding prevails; if w > 0.5, the layout
is stable, and it is a typical F-R style. Fig. 3 (e) results from
applying the embedding-enhanced adjacency matrix, where nodes
with the same label gather into communities. In this example, the

Graph

Embedding
Vectors

Adjacency Matrix (A)

Similarity Matrix (S)

Weighted Sum

w

1-w
Truncation

Embedding-Enhanced
Adjacency Matrix (AE)

…

…

…

0
8.00
5.07.00

0
71.00
082.00

0
00
110

Fig. 4: Embedding-enhanced adjacency matrix generation. The
weighted sum of the similarity matrix generated from embedding
vectors and the graph’s adjacency matrix is passed to the truncation
function to produce the embedding-enhanced adjacency matrix.

generated layout also has fewer node occlusions and edge crossings
compared to the above attempts.

5.6 Enhancement with Node Classification

We have achieved competitive visualizations compared to the F-R
algorithm, as shown in Fig. 3 (e). Benefiting from the characteristics
of graph embedding, we can further enhance the layout with
classification information of nodes to produce more community-
aware layouts.

With the truncation operation, we can adjust the strength of
connection edges between nodes. In Sections 5.4 and 5.5, we
simply apply the same truncation function to process all the nodes.
However, equally treating all nodes is not conducive to presenting
classification information in the layout. To make the node clusters
more distinguishable, we extend the truncation function t(x) to
t ′(x) with two additional parameters, tein and teout , that represent
the intra- and inter- cluster truncation threshold:

t ′(x,u,v) =

{
0, i f x < pt(u,v)
x, otherwise

(9)

where pt is a function that decides which truncation threshold
parameter to use:

pt(u,v) =

{
tein, i f community(u) = community(v)
teout , i f community(u) 6= community(v)

(10)

where node labels provide the cluster information. We use cluster-
ing algorithms (e.g., K-Means) to cluster the nodes from embedding
vectors if the label is unavailable. Generally, tein is smaller than
teout . The final embedding-enhanced adjacency matrix AE is:

AE [u][v] = t ′(N[u][v]) (11)

LATEX, VOL. XX, NO. X, XX 2023 7

Fig. 5: Detailed view of F-R and GEGraph results comparison.

Fig. 3 (f) is the layout result with AE , and a detailed view of
comparison between results of the original F-R and the improved
GEGraph is shown in Fig. 5. The visualizations generated by F-R
are visually appealing by taking into account a set of aesthetic
criteria (e.g., distribute the verties evenly, minimize edge crossings,
make edge lengths uniform, etc.), but the nodes of different
communities are intertwined and difficult to discern, especially
in the boxed parts of the figures. Compared with F-R and the above
attempts, by organically embedding node connectivity and node
attributes in the layout, GEGraph makes the community information
more visible while retaining the original force-oriented aesthetic
style of F-R. With the visualizations generated with GEGraph, we
can more intuitively observe the scales of each community and
how the communities link with each other.

The above trials reflect how we understand the connections and
differences between embedding vectors and graph topology to build
the final layout approach. In summary, as shown in Fig. 4, first,
GEGraph applies an attributed graph embedding method to generate
embedding vectors from topology information and node attributes.
The vectors are used to calculate a similarity matrix, in which
values represent the distances of nodes in the embedding space.
The similarity matrix reflects the high-level proximity, and the
adjacency matrix represents the basic topology structure. Weighted
sum and truncation operations with clusters are used to integrate
the two matrices and produce an embedding-enhanced adjacency
matrix, which represents a new graph with different edge weights.
Finally, the embedding-enhanced matrix is used as the input of
the F-R algorithm. We just take the Les Misérables dataset as an
example here, more apparent comparisons can be found in Fig. 7.

6 EMBEDDING-GUIDED EXPLORATION

Various insights extracted from the embedding vectors, coupled
with the embedding-driven graph layout, enable abundant graph
exploration applications. In this section, we design two interac-
tive applications as examples, including layout-preserving node
aggregation and related nodes searching.

6.1 Layout-Preserving Node Aggregation

In graph visualization, aggregation is an effective operation to
reduce the complexity of layouts and summarize the content of

Myriel

Fantine

Mme.Burgon

Cosette

Child1

Valjean

Gavroche

Fauchelevent

Javert

Boulatruelle

MotherPlutarch

(a) Aggregation graph (b) Find related nodes

Fig. 6: Interactive exploration on the Les Misérables dataset
based on the layout (Fig. 3 (f)). (a) An aggregation graph to
give an overview with Focus+Context interaction. (b) The node
"Gillenormand" is clicked, and the similar nodes are stressed.

graphs [55]. In the general aggregation process, certain elements
in a graph are classified, and each class is aggregated to show
the connection or difference between classes [79], [80], [54].
Based on the community-aware layout (Fig. 3 (f)), we draw the
aggregation graph (Fig. 6 (a)) to give an overview of the original
graph. The design logic is as follows: aggregated nodes represent
communities. The size of aggregated nodes reflects the scale of
communities. Two aggregated nodes are linked if an edge (u,v)
exists, where u and v are in different communities. The number of
cross-community edges is reflected by the edges’ width between
each pair of aggregated nodes. The positions of the aggregated
nodes are the centers of communities. In addition, we compute
central nodes that are representatives for communities, as shown
in the legend of Fig. 6 (a). The random walking paths generated
in the graph embedding algorithm can be treated as “sentences",
and each node in the path is a “word". We use TF-IDF [60] to
weight each “word" in these “sentences", and the node with largest
numerical weight score in each group is selected as the community
representative.

Inspired by Herman et al. [33] and responsive matrix cells [34],
we employ Focus+Context technology to facilitate interactive
exploration, which allows the viewer to inspect interesting parts
of the graph in detail without losing the global context. As shown
in Fig. 6 (a), the application of F+C can integrate the embedding-
driven graph layout and aggregations in the same view. When the
user clicks an aggregated node, the large aggregated node will be
replaced by a subgraph constructed with the real nodes belonging
to the community. Additionally, inspired by an edge bundling work
of Wang et al. [78], we design the transition effect from aggregated
edges to focused layout edges. The aggregated edge terminates on
the boundary circle, and the cross-community edges are linked from
the endpoint on the circle to real nodes. In order to emphasize that
these edges link the two communities, the Bezier curve algorithm
is applied to make their shapes better. These edges are also drawn
with different colors to indicate which community they link to. As
a result, users can obtain both the global layout and the detailed
community structure with an engaging user experience.

6.2 Multi-Strategy Related Nodes Searching

Another embedding-driven exploration method we design is to
interactively find the related nodes of a specific node, which is
a common visual exploration task in the graph [44]. Existing
solutions usually display neighbors with first-order or second-order
proximity based on the graph topology. Despite the simplicity and

LATEX, VOL. XX, NO. X, XX 2023 8

TABLE 1: The graph datasets used in the evaluation.

Name #node #edge #attribute #label Description

Les Misérables [39] 77 254 0 Yes Characters network of
Victor Hugo’s novel.

Webkb(Cornell) [14] 195 286 1703 Yes Webpage citation network
of Cornell University

Facebook [50] 347 2519 224 No Social network from Face-
book.

Science [7] 554 2276 0 Yes Cross-disciplinary coau-
thorship in science.

Cora [48] 2708 5278 1433 Yes Citation network of scien-
tific publications.

CiteSeer [48] 3264 4536 3703 Yes Citation network of scien-
tific publications.

intuitiveness, they cannot reveal the comprehensive similarity or
higher-order proximity of nodes.

In our application design, after graph embedding, the nodes
are encoded as feature vectors, and the similarity of the nodes can
be calculated with different proximities, as described in Section
4.3. For one specific node, with different random walk strategies,
the layout can find related nodes in three embedding spaces:
local structure level, global structure level, and attribute level.
For example, in a citation graph of the Science dataset [68], the
local proximity of nodes implies the direct citation between papers.
The attribute proximity can find the papers in the same community.
The global proximity indicates the similar structure role in different
communities. As shown in Fig. 6 (b), by clicking one node in
the graph, the similar nodes will be labeled and stressed with
green color through appropriate searching strategies with vector
distances. As a result, users can search related nodes in the graph
with different proximities to satisfy their various exploration tasks.

7 EVALUATION

We evaluate our approach from four perspectives: (1) We validate
the layout quality qualitatively with multiple graph datasets; (2)
We adopt a set of quantitative metrics to measure the readability
of graph layouts; (3) We conduct a user study for human-centered
analysis; (4) We present two case studies on real-world data.

7.1 Experiment Setting

The settings include implementation, datasets, baselines to compare,
and the optional selection of parameters.

Implementation. We coded our approach with Python and
referred to the F-R code of Networkx1 and an efficiency-optimized
version of node2vec2. Our code3 was run in multiple threads on a
PC with Intel(R) Core(TM) i7-9700 CPU, and 16 GB memory.

Datasets. Table 1 lists the information of graph datasets used
in the evaluation, including the number of nodes, edges, attributes,
and whether the class label is provided. Nodes in Les Misérables
and Science are not attached with node attributes, and the label of
nodes is used as the only attribute during graph embedding.

Baseline. We compare our layout algorithm, GEGraph, with
five representative methods (F-R, PH, DRGraph, graphTPP, and
GraphTSNE). Our selection prioritizes approaches that have a wide
range of applications, a publicly available implementation, and a
record of comparison over others. The selected methods cover two
classification dimensions. For groupings from Nobre et al. [55],

1. https://github.com/networkx/networkx
2. https://github.com/VHRanger/nodevectors
3. https://github.com/tzw28/EmbeddingGuidedLayout

F-R, PH, and DRGraph are topology-driven, graphTPP is attribute-
driven, while GraphTSNE is a hybrid approach. For families
in [24], [74], DRGraph and GraphTSNE are dimensionality
reduction-based, F-R, PH, and graphTPP are force-directed, while
DRGraph is a multi-level approach. In addition, to explore the
importance of integrating attributes in the layout, we also include a
node2vec-based version that only embeds the topology information,
GEGraph (node2vec). GEGraph (node2vec-a) is the final version
of integrating attributes.

Selection of Parameters. There are several pending tunable
parameters in our design. Similar to DRGraph [93], we intensively
discuss the selection of parameters here. We have set default values
for simplicity while achieving relatively good results based the
parameter sensitivity analysis. Users are also allowed to finetune
the parameters according to their requirements.
• Random-walk strategy parameters p, q, and r. As demon-

strated in Section 4.3, users can adjust p, q, and r to control
the probability of choosing next node during random walk
process. For the purpose of drawing neighbors or attribute-
similar nodes closer, we often use a lower value (< 1) of q
and r and simply set p = 1 in such cases.

• The matrix weight w. As described in Section 5.5, w balances
the embedding features and topological information. Gener-
ally, we set w = 0.4 to make embedding information more
significant while keeping the overall topology of the graph in
the layout based on the sensitivity analysis.

• The truncation threshold tein and teout . As discussed in Section
5.6, the embedding-enhanced adjacency matrix is filtered by
the truncation function with the threshold tein and teout . A
high tein value will weaken connections between nodes in the
same cluster and a low teout value will keep most connections
between clusters. The layout is more sensitive to tein than teout .
We use tein = 0.4 and teout = 0.6 in general cases based on the
sensitivity analysis.

In addition, the number of iterations of the F-R algorithm is
also a parameter. We are consistent with the design of the original
F-R algorithm, which defaults to 50 iterations. As discussed in [19],
although this is excessive on the smaller graphs, the iterations of
small graphs consume little time. So in general users do not need
to adjust it. For very large graphs, users can increase the number
of iterations appropriately.

7.2 Qualitative Layout Quality

Fig. 7 shows the visualizations generated by GEGraph and baseline
methods. Generally, GEGraph avoids manual adjustments and prior
knowledge requirement and allows more input graph types. We can
observe evident community information and fewer node occlusions
and edge crossings in the layouts created by GEGraph (node2vec-a)
in the study compared to the other methods under evaluation. In
detail, F-R cannot handle the scale properly when dealing with
unconnected graphs, such as Webkb, Facebook, Cora, and CiteSeer,
where the discrete nodes are far from the connected body. When
dealing with large graphs, it usually produces poor layouts as it
converges to local minima and can hardly retain the global structure.
PH initially draws a graph with F-R. Then the user can click the
persistent barcodes to separate the partitions generated by persistent
homology features. Its bar-list integration design is novel but not
effective enough for large graphs. On Cora and CiteSeer, we fail to
identify the most compelling portion barcodes among thousands
of them and spend considerable time drawing a relatively good

LATEX, VOL. XX, NO. X, XX 2023 9

layout with PH. DRGraph focuses on efficiently processing large
graphs. So it performs relatively well on large datasets (e.g., Cora
and CiteSeer). However, it can hardly achieve good global layouts,
and the clutter of unrelated structures usually masks the community
information. The above three methods are all topology-driven
and ignore the node attributes. Yet, graphTPP uses the attribute-
based cluster information to draw community-aware visualizations.
However, it ignores the typological structure. So the generated
layout usually contains compact clusters, where most nodes are
positioned at the same coordinates. GraphTSNE can integrate
node attributes with topology. It performs slightly better than
topology-driven approaches, but the community information is not
distinguishable enough compared with GEGraph. As GraphTSNE

can only process graphs with multiple attributes, Les Misérables,
Facebook, and Science are skipped. GEGraph integrates node
attributes with topological information while preserving F-R’s
"hub-and-spoke" drawing style. The communities are clarified on
small graphs like Les Misérables and Webkb, while the topological
structure still plays a primary role. On large graphs like Cora and
CiteSeer, GEGraph can separate nodes into distinct communities to
avoid a messy visualization. The aggregation views also indicate the
community awareness of GEGraph. If without attributes embedded,
the layouts generated by GEGraph (node2vec) are relatively poor,
which is evident in Webkb and Facebook. So our method can
produce attractive and community-aware graph layouts, striking a
better balance between aesthetic and exploration goals.

Les Misérables Webkb Facebook Science Cora CiteSeer

F-R

PH

DRGraph

graphTPP (-) (-)

GraphTSNE (-) (-) (-)

GEGraph
(node2vec,
without
attributes)

GEGraph
(node2vec-a,
with
attributes)

Aggregation
view of
GEGraph

Fig. 7: Graph visualizations with F-R, PH, DRGraph, GraphTSNE, graphTPP, and GEGraph, as well as the aggregation view.

LATEX, VOL. XX, NO. X, XX 2023 10

7.3 Quantitative Measurement

We further measure the layout results in Fig. 7 with a set of
quantitative readability metrics.

7.3.1 Evaluation Metrics

We adopt six metrics (three for aesthetic goals and three for explo-
ration goals) derived from the evaluation frameworks proposed by
Haleem et al. [30] and Wang et al. [77]. These metrics are also
widely used to evaluate other graph layout algorithms, which are
introduced as follows:
• Node Spread (Nsp) evaluates the node dispersion that measures

the average distance of nodes from the community center.

Nsp = ∑
c∈C

1
|C|∑v∈c

√
(vx− cx)2 +(vy− cy)2 (12)

where C is the set of communities, (vx,vy) and (cx,cy) are the
position of the node and community center, respectively. Higher
Nsp indicates less distinguishable communities in the layout.

• Node Occlusions (Noc) is the count of node pairs that are placed
at the same coordinate within a threshold. The count is further
divided by total number of pairs.

• Edge Crossings (Ec) evaluates the frequency of edge crossing,
which can cause clutter in the layout. General edge crossings
(Ec) is the percentage of crossed edges among all edge pairs.

• Group Overlap (Go) measures the overlap between commu-
nities’ convex hulls, and a small value indicates the visually
apparent group membership in the graph.

Go = 1− 1
|P| ∑g∈P

overlap(g,P\g)
|P\g|

(13)

where overlap(g,P\g) is the number of nodes within the convex
hull between the community g and other communities P\g.

• Community Entropy (H) measures the disorder of the nodes in
the layout. The layout area is divided into uniform rectangular
regions. For each region, the nodes in the region belong to
different communities. p(c) is the percentage of nodes from
community c, then the entropy of the local region is:

H =−∑
c∈C

p(c) log2 p(c) (14)

• Spatial Autocorrelation (C) is a geographical data metric that
measures the community distribution of the layout. For the region
within a certain radius around the node i, Ci is calculated as:

Ci =
∑

N
j=1(1−NormDist(i, j))IsSameCommunity(i, j)

∑
N
j=1(1−NormDist(i, j))

(15)

where N is number of nodes around node i, NormDist(i, j) is
the normalized distance between the two nodes i and j. If they
are from the same community, IsSameCommunity(i, j) returns 0,
otherwise 1. C is the average value of all Ci.

7.3.2 Quantitative Results

The quantitative evaluation results of the layouts in Fig. 7 are listed
in Table 2. Smaller values for all metrics indicate better layout
quality, and the magnitude of values is related to the dataset scale. In
each group with a specific dataset and a metric, we mark the outlier
values of extreme poor performance in red that lead to confusing
layouts, mainly based on the outlier detection algorithm in the
boxplot. Values of best performance in each group are highlighted
in bold font. Since our goal is to strike a better balance between

TABLE 2: Quantitative evaluation results. Smaller values indicate
better performance in specific metrics. Outliers are marked red, and
values of the best performance are highlighted in bold font.

Dataset Method Nsp Noc Ec Go H C

Les Misérables

F-R 0.076 0.000 0.027 0.009 0.500 0.343
PH 0.051 0.000 0.025 0.002 0.302 0.166
graphTPP - - - - - -
DRGraph 0.150 0.068 0.119 0.189 1.043 0.732
GraphTSNE - - - - - -
GEGraph(node2vec) 0.058 0.000 0.027 0.000 0.220 0.217
GEGraph(node2vec-a) 0.051 0.000 0.028 0.000 0.174 0.134

Webkb

F-R 0.158 0.158 0.011 0.411 0.775 0.707
PH 0.256 0.067 0.005 0.326 1.118 0.667
graphTPP 0.038 3.508 0.214 0.000 0.034 0.015
DRGraph 0.232 0.310 0.006 0.332 1.174 0.707
GraphTSNE 0.265 0.095 0.028 0.185 1.116 0.488
GEGraph(node2vec) 0.084 5.396 0.014 0.385 0.806 0.719
GEGraph(node2vec-a) 0.109 0.021 0.069 0.007 0.268 0.143

Facebook

F-R - 2.061 0.068 - - -
PH - 0.820 0.066 - - -
graphTPP - 1.693 0.192 - - -
DRGraph - 0.493 0.088 - - -
GraphTSNE - - - - - -
GEGraph(node2vec) - 6.732 0.090 - - -
GEGraph(node2vec-a) - 0.120 0.060 - - -

Science

F-R 0.075 0.103 0.003 0.018 0.661 0.386
PH 0.098 0.000 0.004 0.007 0.502 0.171
graphTPP - - - - - -
DRGraph 0.083 0.355 0.003 0.033 0.676 0.285
GraphTSNE - - - - - -
GEGraph(node2vec) 0.051 0.145 0.003 0.003 0.566 0.275
GEGraph(node2vec-a) 0.051 0.147 0.003 0.002 0.458 0.229

Cora

F-R 0.099 0.571 0.004 0.419 1.268 0.751
PH 0.206 0.407 0.004 0.232 1.210 0.488
graphTPP 0.098 0.126 0.027 0.101 0.548 0.386
DRGraph 0.155 0.207 0.002 0.209 1.043 0.388
GraphTSNE 0.184 0.067 0.004 0.202 0.934 0.319
GEGraph(node2vec) 0.115 0.120 0.019 0.025 0.550 0.254
GEGraph(node2vec-a) 0.092 0.131 0.014 0.009 0.402 0.111

Citeseer

F-R 0.202 0.299 0.003 0.446 2.041 0.770
PH 0.234 1.347 0.004 0.347 1.271 0.507
graphTPP 0.095 0.087 0.029 0.028 0.444 0.148
DRGraph 0.241 0.258 0.001 0.422 1.580 0.590
GraphTSNE 0.203 0.079 0.002 0.319 1.197 0.452
GEGraph(node2vec) 0.091 0.191 0.028 0.005 0.328 0.163
GEGraph(node2vec-a) 0.079 0.158 0.014 0.004 0.220 0.044

aesthetic and exploration goals, we expect a good visualization
to perform well on both sets of metrics, at least well on one
dimension but also above average on the other. Some algorithms
can achieve the best score in a set of metrics but have outlier valves
in other metrics, so the resulting layout is still confusing or not
community-aware.

Exploration-related metrics (Go, H, and C): The metrics
measure community awareness of the layouts, which is vital for
graph exploration. Compared with other methods, it is evident
that GEGraph (node2vec-a) achieves the best performance in most
communities-based cases. An exception is graphTPP with the
Webkb dataset. It clusters nodes into visible communities, so the
corresponding community-related metrics are small. However, the
nodes in the community are too dense (Fig. 7), leading to outlier
metric values of node occlusion and edge crossing, which is mainly
due to the ignorance of the graph topology. Similar cases are also
seen with F-R, PH, and the node2vec-based GEGraph (node2vec).
Without attributes considered, they mostly achieve relatively high
values in exploration-related metrics and can hardly produce
community-aware visualizations. The visualizations generated by
GraphTSNE do not strike a good balance between aesthetic and
exploration goals, even though they take into account the graph
connectivity and node attributes. As shown in Fig. 7, the nodes are
evenly distributed compared to GEGraph (node2vec-a)’s results,
and the community information is not obvious.

Aesthetics-related metrics (Nsp, Noc, and Ec): GEGraph

LATEX, VOL. XX, NO. X, XX 2023 11

(a) Distribution of participants’ selection

(b) User ratings of exploration applications with a 5-point Likert scale

Fig. 8: Results of the user study.

(node2vec-a) is superior to others in terms of Nsp because the
introduction of attributed graph embedding makes related nodes
gather closely and the communities are distinguishable. GEGraph
(node2vec-a) performs well on Noc and Ec with small datasets (e.g.,
Facebook) and has a not bad performance with large datasets (at
least there are no outliers). So the layouts’ community awareness
comes at the cost of a small increase in node occlusions and edge
crossings on top of the visualizations remaining visually appealing.
F-R, PH, graphTPP, and DRGraph include outliers in terms of Noc
with specific datasets, which lead to the nodes placed in a compact
form. GraphTSNE has no outliers on the metrics but most values
are at an intermediate level, so the communities are not visually
distinguishable enough, and there is still some clutter in the layout.

Overall, GEGraph outperformed on the metrics, especially on
the community-related metrics. The generated visualizations can
highlight community information while retaining the aesthetics of
the layout.

7.4 User Study

We conducted a user study for human-centered evaluation. We
recruited 12 participants (5 females and 7 males) who had experi-
ence in data analysis, covering university students, data analysts,
and software engineers. We reorganized the visualizations of each
dataset in Fig. 7 by pairing the results from GEGraph and each of
the other methods. In the study, we first explained the underlying
graph data and then showed participants the layout pairs (the order
was random) through an questionnaire. For each visualization, users
can zoom in to observe the graph structure and semantics. Finally,
we asked them to compare the listed visualizations and answer the
following questions on the questionnaire.
(1) Which visualization do you think is easier to explore clusters?
(2) Which visualization is more visually appealing?
(3) Which visualization better helps you understand the graph?
(4) Which visualization will you choose for further analysis?

After that, we showed the two applications (node aggregation
and related nodes searching) and asked the participants to freely try
with graph datasets in Table 1. They were allowed to use a mouse
to interact with the graph on a laptop as described in Section 6 and
then answer the following 5-point Likert scale questions:
(5) Node aggregation can give a good overview of the underlying
graph layout.
(6) The design of node aggregation can help me explore graphs.

(a) Les Misérables dataset (b) Science dataset

Fig. 9: Use cases. (a) Nodes of major characters in Les Misérables
are labeled with character names; (b) Representative subdisciplines
in major discipline groups are labeled with names.

(7) Related nodes searching can give appropriate results based on
the three strategies.
(8) Related nodes searching can help me explore graphs.

Fig. 8(a) shows the distribution of participants’ selection of
better visualizations. The results indicate that the participants rated
GEGraph better in most pairs, considering community preservation,
aesthetics, and exploration goals. Several participants commented
that they made a decision quickly and found the results of GEGraph
better in most cases. Some also mentioned that they need to
compare the details of the two graphs carefully to give a final
decision in the cases GEGraph fails. Fig. 8(b) presents user
ratings of the two graph exploration designs with a 5-point Likert
scale, which indicate the high usability of the examples. Most
participants showed great interests in using the applications to
explore graphs. Several of them praised for the design of integrating
node aggregation with Focus+Context interactions, which enables
users to explore details within the global content. Some participants
commended that they can obtain different insights from the three
strategies in related nodes searching.

7.5 Case Studies

Les Misérables: This is a graph of characters from the novel Les
Misérables. An edge in the graph linking two nodes indicates that
the two characters appear in the same chapter. Nodes are labeled
with groups in that the characters are involved. Fig. 9 (a) shows the
layout generated by GEGraph, and some nodes are labeled with
the character names. Valjean is the central character of this novel,
and many other nodes are linked to this node, so it is placed at the
center of the layout. Myriel, Cosette, Marius, and Fantine are some
other important characters, and they are directly linked to Valjean,
but they are in different plots, so they are placed in different
communities. Additionally, Cosette and Marius are married in the
story, so they are relatively close in the two communities.

Science: This graph is a map of subdisciplines of science,
where nodes are the disciplines and edges represent that there exist
inter-disciplinary works published between them. Each subdisci-
pline belongs to a major discipline. We label nodes with the highest
degree in each community. In Fig. 9 (b), the overall relations of the
subdisciplines are intuitive. In detail, Semiconducting Materials
and Data Mining are both about computers, so the disciplines they
belong to are connected, and the communities are placed closely.
Protein Science, Clinical Cancer Research, Hospital Financial
Management, and Psychosis are all about medical science, and
these communities are placed closely in the layout.

LATEX, VOL. XX, NO. X, XX 2023 12

K-K F-R SGD

Original

DeepWalk

node2vec

LINE

struc2vec

Fig. 10: Combination of different layout and embedding methods
in our flexible pipeline with the Les Misérables dataset. Embedding
methods are DeepWalk, LINE, node2vec and struc2vec, and layout
methods are K-K, F-R and SGD.

8 DISCUSSION

Transferability to more embedding methods and layout algo-
rithms. According to the flexible design of our pipeline, various
graph embedding methods can be leveraged to enhance the graph
layout result, and the F-R algorithm can also be replaced. Illustrated
with examples, as shown in Fig. 10, we use DeepWalk [57],
LINE [69], node2vec [27], and Struc2vec [59] as embedding
methods, and K-K [37], F-R [19], and SGD [90] as layout
algorithms. Though these methods are based on different principles,
all of them can process weighted undirected graphs, and thus any
of the embedding and layout methods above can be combined
arbitrarily. Considering the effect and efficiency, we finally chose
the combination of node2vec-a and F-R based on our analysis.
However, we argue that this combination is not always superior, and
we hope future work can find more effective and efficient choices,
applying some advanced attribute-first embedding methods [89],
[15], [21], [86]. It would also be interesting to investigate whether
a well-adjusted choice of modules for embedding and layout
can improve the results significantly. Additionally, we note that
GEGraph does not explicitly strive for minimizing edge crossings,
which is mainly due to the use of F-R algorithm [19]. In the future,
we can integrate other layout algorithms in the pipeline for certain
aesthetic goals (e.g., reduce edge crossings, make edge lengths
uniform, etc.).
Scalability and time cost. Although graph extension in our
pipeline will increase the graph size, the newly introduced virtual
nodes are only processed by the embedding method. The layout
calculation process handles the graph with the same size as the
original one. Fig. 11 shows the time cost of our method with
different datasets in the computation environment described in

0

10

20

30

40

50

60

70

80

Miserables Facebook Science Cora Citeseer

(a) time cost (seconds)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Miserables Facebook Science Cora Citeseer

(b) time cost (percentage)

Embedding Vector Processing Integrating Layout Calculating

Fig. 11: Time cost analysis. (a) displays the seconds of each
processing part. (b) is the percentage diagram of in (a). Small
graphs can be handled rapidly, and the extra time introduced by
embedding accounts for a small proportion in large graphs.

Section 7.1. In small datasets, the total time cost is small (< 1s),
and the proportion of extra time introduced by embedding to the
total time cost decreases with the increase of the data scale. In most
situations, the time cost is acceptable for achieving a significantly
improved layout result. Additionally, our embedding method uses
the random walk strategy to sample the graph. If switching to
matrix factorization-based embedding methods (e.g., HSCA [88])
or deep learning-based layout algorithms (e.g., GraphTSNE [46]),
the time cost will be more considerable. Furthermore, optimized
embedding methods can be used with small iteration parameters for
time-sensitive situations. Users can also adopt a heavy but accurate
embedding model to achieve higher practicability [89], [15]. It is a
trade-off between time and quality.

Degree of automation. Our approach does not require users
to manually fine-tune the graph layout like PH [68] and Mag-
netViz [66], nor does it need to adjust complex parameters like
DRGraph [93] (including the size of k-order nearest neighbors, the
number and weight of negative samples, the iteration number, etc.).
Compared to methods that rely on interactive manipulations [65],
[66], [36], [68], our approach is self-automatic. Graph embedding,
integrating, and layout involve a small set of parameters, as
described in Section 7.1. In general cases, GEGraph can achieve
desirable results with a default configuration of parameters, which
was tested on a variety of datasets covering different connectivities
(connected and non-connected graphs), attribute types (node
with single, multiple, or no attributes; nominal and quantitative
attributes), data sizes (tens to thousands of nodes or edges), etc. A
major parameter modification is only required when conducting
precise adjustments.

Graph type. In our pipeline, all the experiments are conducted on
the undirected graph, so the similarity matrix and adjacency matrix
can be summed. However, for directed graphs, the adjacency matrix
is not symmetric. The calculation of the embedding-enhanced
adjacency matrix in our approach will be invalid. So the algorithm
should be further reconsidered to support more types of graphs
(e.g., directed graphs, weighted graphs, and dynamic graphs).
For example, we can modify the adjacency matrix to include
edge directions, incorporate weights into the similarity matrix, or
introduce a new matrix to encode more information. Additionally,
our discretization of continuous attributes introduces a certain
information loss. In the future, we can explore how to better embed
continuous attributes for more fine-grained similarity comparisons.

LATEX, VOL. XX, NO. X, XX 2023 13

9 CONCLUSION

We propose a flexible embedding-based pipeline to support graph
exploration. First, we leverage visualization-oriented graph em-
bedding to encode structure and attribute information into feature
vectors. Second, we present an embedding-driven layout method,
which can achieve aesthetic and community-aware visualizations.
Third, we design two example applications for graph exploration,
a layout-preserving aggregation approach and a related nodes
searching method. The quantitative and qualitative evaluation
results confirm the effectiveness of our approach. The pipeline can
also be extended to integrate other embedding methods and layout
algorithms and develop more interesting exploration applications.
In general, this paper introduces some attempts for embedding-
guided graph exploration. We wish that it could inspire new
thoughts in the community.

ACKNOWLEDGEMENTS

The authors would like to thank all the reviewers for their valuable
suggestions. The work was supported by the National Natural
Science Foundation of China (No. 71690231) and Beijing Key
Laboratory of Industrial Bigdata System and Application.

REFERENCES

[1] N. Ahmed, R. A. Rossi, J. Lee, T. Willke, R. Zhou, X. Kong, and
H. Eldardiry. Role-based Graph Embeddings. IEEE Trans. Knowl. Data
Eng., 34(5):2401–2415, 2022.

[2] D. Archambault, T. Munzner, and D. Auber. GrouseFlocks: Steerable
exploration of graph hierarchy space. IEEE Trans. Vis. Comput. Graph.,
14(4):900–913, 2008.

[3] M. J. Bannister, D. Eppstein, M. T. Goodrich, and L. Trott. Force-directed
graph drawing using social gravity and scaling. Graph Draw. Lect. Notes
Comput. Sci., 7704:414–425, 2013.

[4] A. Barsky, T. Munzner, J. Gardy, and R. Kincaid. Cerebral: Visualizing
multiple experimental conditions on a graph with biological context. IEEE
Trans. Vis. Comput. Graph., 14(6):1253–1260, 2008.

[5] A. Bezerianos, F. Chevalier, P. Dragicevic, N. Elmqvist, and J. Fekete.
GraphDice: A System for Exploring Multivariate Social Networks.
Comput. Graph. Forum, 29(3):863–872, aug 2010.

[6] A. Bharadwaj, D. Gwizdala, Y. Kim, K. Luther, and T. M. Murali. Flud: A
Hybrid Crowd–Algorithm Approach for Visualizing Biological Networks.
ACM Trans. Comput. Interact., 29(1):1–53, 2022.

[7] K. Börner, R. Klavans, M. Patek, A. M. Zoss, J. R. Biberstine, R. P. Light,
V. Larivière, and K. W. Boyack. Design and update of a classification
system: The ucsd map of science. PLoS One, 7(7):1–10, 2012.

[8] U. Brandes and C. Pich. Eigensolver Methods for Progressive Multidi-
mensional Scaling of Large Data. In Graph Draw. Lect. Notes Comput.
Sci., pages 42–53. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[9] W. Buschel, S. Vogt, and R. Dachselt. Augmented reality graph
visualizations. IEEE Comput. Graph. Appl., 39(3):29–40, 2019.

[10] H. Cai, V. W. Zheng, and K. C. C. Chang. A Comprehensive Survey of
Graph Embedding: Problems, Techniques, and Applications. IEEE Trans.
Knowl. Data Eng., 30(9):1616–1637, 2018.

[11] W. Chen, F. Guo, D. Han, J. Pan, X. Nie, J. Xia, and X. Zhang. Structure-
Based Suggestive Exploration: A New Approach for Effective Exploration
of Large Networks. IEEE Trans. Vis. Comput. Graph., 25(1):555–565,
2019.

[12] Y. Chen, Z. Guan, R. Zhang, X. Du, and Y. Wang. A survey on
visualization approaches for exploring association relationships in graph
data. J. Vis., 22(3):625–639, 2019.

[13] J. D. Cohen. Drawing graphs to convey proximity. ACM Trans. Comput.
Interact., 4(3):197–229, sep 1997.

[14] M. Craven, A. McCallum, D. PiPasquo, T. Mitchell, and D. Freitag.
Learning to extract symbolic knowledge from the world wide web.
Technical report, Carnegie-mellon univ pittsburgh pa school of computer
Science, 1998.

[15] Y. Dong, N. V. Chawla, and A. Swami. Metapath2vec: Scalable
representation learning for heterogeneous networks. In KDD’17, pages
135–144. ACM, 2017.

[16] M. Dörk, S. Carpendale, and C. Williamson. EdgeMaps: visualizing
explicit and implicit relations. In VDA’11, jan 2011.

[17] C. Dunne, S. I. Ross, B. Shneiderman, and M. Martino. Readability metric
feedback for aiding node-link visualization designers. IBM J. Res. Dev.,
59(2-3):11–14, 2015.

[18] M. T. Fischer, A. Frings, D. A. Keim, and D. Seebacher. Towards a
Survey on Static and Dynamic Hypergraph Visualizations. In VIS’21.
IEEE, 2021.

[19] T. M. Fruchterman and E. M. Reingold. Graph drawing by force-directed
placement. Softw. Pract. Exp., 21(11):1129–1164, 1991.

[20] P. Gajer, M. T. Goodrich, and S. G. Kobourov. A Multi-dimensional
Approach to Force-Directed Layouts of Large Graphs. In Graph Draw.
Lect. Notes Comput. Sci., pages 211–221. 2001.

[21] H. Gao and H. Huang. Deep attributed network embedding. In IJCAI’18.
Morgan Kaufmann, 2018.

[22] N. Gehlenborg, S. I. O’Donoghue, N. S. Baliga, A. Goesmann, M. A.
Hibbs, H. Kitano, O. Kohlbacher, H. Neuweger, R. Schneider, D. Tenen-
baum, and A. C. Gavin. Visualization of omics data for systems biology.
Nat. Methods, 7(3):S56–S68, 2010.

[23] S. Ghani, B. C. Kwon, S. Lee, J. S. Yi, and N. Elmqvist. Visual analytics
for multimodal social network analysis: A design study with social
scixentists. IEEE Trans. Vis. Comput. Graph., 19(12):2032–2041, 2013.

[24] H. Gibson, J. Faith, and P. Vickers. A survey of two-dimensional graph
layout techniques for information visualisation. Inf. Vis., 12(3-4):324–357,
2013.

[25] H. Gibson and P. Vickers. Using adjacency matrices to lay out larger
small-world networks. Appl. Soft Comput. J., 42:80–92, 2016.

[26] H. Gibson and P. Vickers. graphTPP: A multivariate based method for
interactive graph layout and analysis. arXiv, 2017.

[27] A. Grover and J. Leskovec. Node2vec: Scalable feature learning for
networks. In KDD’16. ACM, 2016.

[28] D. Guo. Flow mapping and multivariate visualization of large spatial
interaction data. IEEE Trans. Vis. Comput. Graph., 15(6):1041–1048,
2009.

[29] S. Hachul and M. Jünger. Drawing Large Graphs with a Potential-Field-
Based Multilevel Algorithm. In Graph Draw. Lect. Notes Comput. Sci.,
pages 285–295. 2005.

[30] H. Haleem, Y. Wang, A. Puri, S. Wadhwa, and H. Qu. Evaluating the
Readability of Force Directed Graph Layouts: A Deep Learning Approach.
IEEE Comput. Graph. Appl., 39(4):40–53, 2019.

[31] D. Harel and Y. Koren. Graph Drawing by High-Dimensional Embedding.
J. Graph Algorithms Appl., 8(2):195–214, jun 2004.

[32] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu,
D. Koutra, C. Faloutsos, and L. Li. RolX: Structural role extraction &
mining in large graphs. In KDD’12, pages 1231–1239. ACM, 2012.

[33] I. Herman, G. Melançon, and M. S. Marshall. Graph visualization
and navigation in information visualization: a survey. IEEE Trans. Vis.
Comput. Graph., 6(1):24–43, 2000.

[34] T. Horak, P. Berger, H. Schumann, R. Dachselt, and C. Tominski.
Responsive Matrix Cells: A Focus+Context Approach for Exploring
and Editing Multivariate Graphs. IEEE Trans. Vis. Comput. Graph.,
27(2):1644–1654, 2021.

[35] T. Itoh and K. Klein. Key-node-separated graph clustering and layouts
for human relationship graph visualization. IEEE Comput. Graph. Appl.,
35(6):30–40, 2015.

[36] I. Jusufi, A. Kerren, and B. Zimmer. Multivariate network exploration
with JauntyNets. In IV’13, pages 19–27, 2013.

[37] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Inf. Process. Lett., 31(1):7–15, 1989.

[38] A. Kerren, H. C. Purchase, and M. O. Ward, editors.
Multivariate Network Visualization, volume 8380 of Lecture Notes
in Computer Science. Springer International Publishing, 2014.

[39] D. E. Knuth. Stanford GraphBase: A platform for combinatorial algorithms.
ACM-SIAM, 1993.

[40] J. F. Kruiger, P. E. Rauber, R. M. Martins, A. Kerren, S. Kobourov,
and A. C. Telea. Graph Layouts by t-SNE. Comput. Graph. Forum,
36(3):283–294, 2017.

[41] M. Krzywinski, J. Schein, I. Birol, J. Connors, R. Gascoyne, D. Horsman,
S. J. Jones, and M. A. Marra. Circos: An information aesthetic for
comparative genomics. Genome Res., 19(9):1639–1645, 2009.

[42] O. H. Kwon, T. Crnovrsanin, and K. L. Ma. What Would a Graph Look
Like in this Layout? A Machine Learning Approach to Large Graph
Visualization. IEEE Trans. Vis. Comput. Graph., 24(1):478–488, 2018.

[43] O. H. Kwon and K. L. Ma. A Deep Generative Model for Graph Layout.
IEEE Trans. Vis. Comput. Graph., 26(1):665–675, 2020.

[44] B. Lee, C. Plaisant, C. S. Parr, J. D. Fekete, and N. Henry. Task taxonomy
for graph visualization. In Proc. BELIV’06. ACM, 2006.

LATEX, VOL. XX, NO. X, XX 2023 14

[45] P. Lehtinen, M. Saarela, and T. Elomaa. Online ChiMerge Algorithm. In
Intell. Syst. Ref. Libr., pages 199–216. 2012.

[46] Y. Y. Leow, T. Laurent, and X. Bresson. GraphTSNE: A Visualization
Technique for Graph-Structured Data. In ICLR’19, 2019.

[47] L. Liao, X. He, H. Zhang, and T. S. Chua. Attributed Social Network
Embedding. IEEE Trans. Knowl. Data Eng., 30(12):2257–2270, 2018.

[48] Q. Lu and L. Getoor. Link-based classification. In ICML’03, 2003.
[49] R. M. Martins, J. F. Kruiger, R. Minghim, A. C. Telea, and A. Kerren.

MVN-Reduce : Dimensionality Reduction for the Visual Analysis of
Multivariate Networks. In EuroVis’17 Short Paper, pages 10–14, 2017.

[50] J. McAuley and J. Leskovec. Learning to discover social circles in ego
networks. In NIPS’12, pages 539–547, 2012.

[51] M. Meyer, T. Munzner, and H. Pfister. MizBee: A multiscale synteny
browsers. IEEE Trans. Vis. Comput. Graph., 15(6):897–904, 2009.

[52] H. Neuweger, M. Persicke, S. P. Albaum, T. Bekel, M. Dondrup, A. T.
Hüser, J. Winnebald, J. Schneider, J. Kalinowski, and A. Goesmann.
Visualizing post genomics data-sets on customized pathway maps by
ProMeTra – aeration-dependent gene expression and metabolism of
Corynebacterium glutamicum as an example. BMC Syst. Biol., 3(1):82,
dec 2009.

[53] A. Noack. An energy model for visual graph clustering. Graph Draw.
Lect. Notes Comput. Sci., 2912:425–436, 2003.

[54] A. Noack and C. Lewerentz. A space of layout styles for hierarchical
graph models of software systems. SoftVis’05, 1(212):155–164, 2005.

[55] C. Nobre, M. Meyer, M. Streit, and A. Lex. The state of the art in
visualizing multivariate networks. In Comput. Graph. Forum, volume 38,
pages 807–832. Wiley, 2019.

[56] C. Partl, A. Lex, M. Streit, H. Strobelt, A. M. Wassermann, H. Pfis-
ter, and D. Schmalstieg. ConTour: Data-driven exploration of multi-
relational datasets for drug discovery. IEEE Trans. Vis. Comput. Graph.,
20(12):1883–1892, 2014.

[57] B. Perozzi, R. Al-Rfou, and S. Skiena. DeepWalk: Online learning of
social representations. In KDD’14. ACM, 2014.

[58] A. J. Pretorius and J. J. Van Wijk. Visual inspection of multivariate graphs.
Comput. Graph. Forum, 27(3):967–974, 2008.

[59] L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo. Struc2vec: Learning
node representations from structural identity. In KDD’17. ACM, 2017.

[60] S. Robertson. Understanding inverse document frequency: on theoretical
arguments for IDF. J. Doc., 60(5):503–520, oct 2004.

[61] L. Shen, E. Shen, Y. Luo, X. Yang, X. Hu, X. Zhang, Z. Tai, and J. Wang.
Towards Natural Language Interfaces for Data Visualization: A Survey.
IEEE Trans. Vis. Comput. Graph., pages 1–20, sep 2022.

[62] L. Shi, Q. Liao, H. Tong, Y. Hu, Y. Zhao, and C. Lin. Hierarchical
focus+context heterogeneous network visualization. In PacificVis’14,
pages 89–96. IEEE, 2014.

[63] B. Shneiderman and A. Aris. Network visualization by semantic substrates.
IEEE Trans. Vis. Comput. Graph., 12(5):733–740, 2006.

[64] S. Spanurattana and T. Murata. Visual analysis of bipartite networks. In
ICDM’11. IEEE, 2011.

[65] A. S. Spritzer and C. M. Freitas. A Physics-based Approach for Interactive
Manipulation of Graph Visualizations. In Proc. AVI’08, pages 271–278,
2008.

[66] A. S. Spritzer and C. M. D. S. Freitas. Design and evaluation of MagnetViz
- A graph visualization tool. IEEE Trans. Vis. Comput. Graph., 18(5):822–
835, 2012.

[67] A. Srinivasan and J. Stasko. Orko: Facilitating Multimodal Interaction for
Visual Exploration and Analysis of Networks. IEEE Trans. Vis. Comput.
Graph., 24(1):511–521, 2018.

[68] A. Suh, M. Hajij, B. Wang, C. Scheidegger, and P. Rosen. Persistent
Homology Guided Force-Directed Graph Layouts. IEEE Trans. Vis.
Comput. Graph., 26(1):697–707, 2020.

[69] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. LINE: Large-
scale information network embedding. In WWW’15. ACM, 2015.

[70] S. Van Den Elzen and J. J. Van Wijk. Multivariate network exploration
and presentation: From detail to overview via selections and aggregations.
IEEE Trans. Vis. Comput. Graph., 20(12):2310–2319, 2014.

[71] S. Van Den Elzen and J. J. Van Wijk. Multivariate network exploration
and presentation: From detail to overview via selections and aggregations.
IEEE Trans. Vis. Comput. Graph., 20(12):2310–2319, 2014.

[72] L. Van Der Maaten and G. Hinton. Visualizing data using t-SNE. J. Mach.
Learn. Res., 9(86):2579–2625, 2008.

[73] F. van Ham, N. Krishnan, and Others. Ask-graphview: A large scale graph
visualization system. IEEE Trans. Vis. Comput. Graph., 12(5):669–676,
2006.

[74] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. J. van Wijk,
J. D. Fekete, and D. W. Fellner. Visual analysis of large graphs: State-

of-the-art and future research challenges. Eurographics Symp. Geom.
Process., 30(6):1719–1749, 2011.

[75] C. Walshaw. A Multilevel Algorithm for Force-Directed Graph Drawing.
J. Graph Algorithms Appl., 7(3):171–182, 2001.

[76] Y. Wang, Z. Jin, Q. Wang, W. Cui, T. Ma, and H. Qu. DeepDrawing: A
Deep Learning Approach to Graph Drawing. IEEE Trans. Vis. Comput.
Graph., 26(1):676–686, 2020.

[77] Y. Wang, Q. Shen, D. Archambault, Z. Zhou, M. Zhu, S. Yang, and H. Qu.
AmbiguityVis: Visualization of Ambiguity in Graph Layouts. IEEE Trans.
Vis. Comput. Graph., 22(1):359–368, 2016.

[78] Y. Wang, M. Xue, Y. Wang, X. Yan, B. Chen, C. W. Fu, and C. Hurter.
Interactive Structure-aware Blending of Diverse Edge Bundling Visualiza-
tions. IEEE Trans. Vis. Comput. Graph., 26(1):687–696, 2020.

[79] M. Wattenberg. Visual exploration of multivariate graphs. In CHI’06.
ACM, 2006.

[80] K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mané, D. Fritz,
D. Krishnan, F. B. Viégas, and M. Wattenberg. Visualizing Dataflow
Graphs of Deep Learning Models in TensorFlow. IEEE Trans. Vis.
Comput. Graph., 24(1):1–12, 2018.

[81] Y. Wu, N. Pitipornvivat, J. Zhao, S. Yang, G. Huang, and H. Qu. egoSlider:
Visual Analysis of Egocentric Network Evolution. IEEE Trans. Vis.
Comput. Graph., 22(1):260–269, 2016.

[82] Y. Wu and M. Takatsuka. Visualizing multivariate network on the surface
of a sphere. In APVis’06, pages 77–83, 2006.

[83] Y. Wu and M. Takatsuka. Visualizing Multivariate Networks: A Hybrid
Approach. In PacificVis’08, pages 223–230. IEEE, 2008.

[84] M. Xue, Y. Wang, C. Han, J. Zhang, Z. Wang, K. Zhang, C. Hurter,
J. Zhao, and O. Deussen. Target Netgrams: An Annulus-Constrained
Stress Model for Radial Graph Visualization. IEEE Trans. Vis. Comput.
Graph., pages 1–13, 2022.

[85] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang. Network
representation learning with rich text information. In IJCAI’15. Morgan
Kaufmann, 2015.

[86] H. Yang, S. Pan, P. Zhang, L. Chen, D. Lian, and C. Zhang. Binarized
attributed network embedding. In ICDM’18. IEEE, 2018.

[87] J. Yang and J. Leskovec. Overlapping Communities Explain
Core–Periphery Organization of Networks. Proc. IEEE, 102(12):1892–
1902, dec 2014.

[88] D. Zhang, J. Yin, X. Zhu, and C. Zhang. Homophily, structure, and
content augmented network representation learning. In ICDM’17. IEEE,
2017.

[89] D. Zhang, J. Yin, X. Zhu, and C. Zhang. MetaGraph2Vec: Complex
semantic path augmented heterogeneous network embedding. In Lect.
Notes Comput. Sci., pages 196–208. Springer, 2018.

[90] J. X. Zheng, S. Pawar, and D. F. Goodman. Graph drawing by stochastic
gradient descent. IEEE Trans. Vis. Comput. Graph., 25(9):2738–2748,
2019.

[91] Z. Zhou, C. Shi, X. Shen, L. Cai, H. Wang, Y. Liu, Y. Zhao, and W. Chen.
Context-aware sampling of large networks via graph representation
learning. IEEE Trans. Vis. Comput. Graph., 27(2):1709–1719, 2021.

[92] D. Zhu, D. Wang, P. Cui, and W. Zhu. Deep variational network
embedding in wasserstein space. In KDD’18. ACM, 2018.

[93] M. Zhu, W. Chen, Y. Hu, Y. Hou, L. Liu, and K. Zhang. DRGraph: An Ef-
ficient Graph Layout Algorithm for Large-scale Graphs by Dimensionality
Reduction. IEEE Trans. Vis. Comput. Graph., 27(2):1666–1676, 2021.

