
NotePlayer: Engaging Jupyter Notebooks for Dynamic
Presentation of Analytical Processes

Yang Ouyang
ouyy@shanghaitech.edu.cn
ShanghaiTech University

Shanghai, China

Leixian Shen
lshenaj@connect.ust.hk

The Hong Kong University of Science and Technology
Hong Kong SAR, China

Yun Wang∗
wangyun@microsoft.com

Microsoft
Beijing, China

Quan Li∗
liquan@shanghaitech.edu.cn
ShanghaiTech University

Shanghai, China

ABSTRACT
Diverse presentation formats play a pivotal role in effectively con-
veying code and analytical processes during data analysis. One
increasingly popular format is tutorial videos, particularly those
based on Jupyter notebooks, which offer an intuitive interpretation
of code and vivid explanations of analytical procedures. However,
creating such videos requires a diverse skill set and significant man-
ual effort, posing a barrier for many analysts. To bridge this gap,
we introduce an innovative tool called NotePlayer, which connects
notebook cells to video segments and incorporates a computational
engine with language models to streamline video creation and edit-
ing. Our aim is to make the process more accessible and efficient for
analysts. To inform the design of NotePlayer, we conducted a forma-
tive study and performed content analysis on a corpus of 38 Jupyter
tutorial videos. This helped us identify key patterns and challenges
encountered in existing tutorial videos, guiding the development
of NotePlayer. Through a combination of a usage scenario and a
user study, we validated the effectiveness of NotePlayer. The results
show that the tool streamlines the video creation and facilitates the
communication process for data analysts.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools.

KEYWORDS
Communication, Tutorial Video, Jupyter Notebook, Large Language
Model
ACM Reference Format:
Yang Ouyang, Leixian Shen, Yun Wang, and Quan Li. 2024. NotePlayer:
Engaging Jupyter Notebooks for Dynamic Presentation of Analytical Pro-
cesses. In The 37th Annual ACM Symposium on User Interface Software and

∗Quan Li and Yun Wang are the corresponding authors.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0628-8/24/10
https://doi.org/10.1145/3654777.3676410

Technology (UIST ’24), October 13–16, 2024, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 20 pages. https://doi.org/10.1145/3654777.3676410

1 INTRODUCTION
Effective communication in data analysis is essential for translat-
ing complex codes and analytical processes into understandable
formats [14, 38]. Employing diverse presentation formats, ranging
from traditional text reports to interactive digital platforms, is cru-
cial in achieving this objective [33, 39, 69]. Among these methods,
tutorial videos have emerged as particularly popular, offering an in-
tuitive interpretation of codes while vividly articulating underlying
analytical processes [3, 7, 74].

In parallel, the Jupyter Notebook platform has gained significant
recognition within the programming and data analysis commu-
nity [38, 50, 51, 68]. Regarded as a vital tool for efficient data analy-
sis, its structured design, featuring input and output cells, facilitates
iterative exploration and provides instant feedback, essential for
hypothesis testing and comprehension [12, 23, 38, 52]. Notably,
the user interface of Jupyter Notebook frequently appears in a va-
riety of video tutorials, making it accessible on online platforms
such as YouTube, MOOCs, and Khan Academy [4, 53, 59, 60, 63].
Many findings highlight the benefits of tutorial videos in enriching
both theoretical understanding and practical application in data
science [20, 37, 40, 67].

However, creating tutorial videos based on Jupyter notebooks
poses challenges for data analysts. Effective programming tutorial
videos demand a blend of skills, including providing insightful guid-
ance and understanding viewer engagement [7, 43, 74]. Balancing
the clarity and structure of the original analysis with engaging
and informative content is crucial [35, 49]. Moreover, many ana-
lysts may lack familiarity with specialized video editing tools like
Adobe After Effects and Premier. While powerful, these tools are
not tailored for programming tutorial videos, adding complexity,
especially for those eager to share their analytical processes but
inexperienced in video editing. Despite efforts to enhance presen-
tation and interactivity within Jupyter notebooks [30, 38, 39, 69], a
gap remains in fully capturing the analytical process. These efforts
often prioritize showcasing insights over providing a detailed walk-
through of the analytical journey. Consequently, viewers may lack
a clear understanding of the methodologies and critical thinking
behind the findings.

https://orcid.org/0009-0000-5841-7659
https://orcid.org/0000-0003-1084-4912
https://orcid.org/0000-0003-0468-4043
https://orcid.org/0000-0003-2249-0728
https://doi.org/10.1145/3654777.3676410
https://doi.org/10.1145/3654777.3676410

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Yang Ouyang, Leixian Shen, Yun Wang, andQuan Li

To address these challenges, we initially conducted an interview-
based formative study involving four creators to gain insights into
their workflows and identify challenges in tutorial video creation.
Subsequently, we conducted a content analysis of 38 programming
tutorial videos to explore their characteristics and detect common
patterns, thus shedding light on the current landscape of this media
format. The formative study revealed several challenges in creating
effective videos, including maintaining a clear logical flow aligned
with the code structure, enhancing comprehension through visual
aids, and the time-consuming nature of editing to rectify errors
and enhance clarity. The content analysis highlighted that these
videos employ various narration styles (informative, structural, in-
teractive) along with specific creator behaviors (e.g., annotating).
Key strategies for improving tutorials include emphasizing code
snippets through annotations, ensuring smooth content flow, and
engaging viewers with interactive questions. We have also arrived
at a consensus on transitioning from static screen recordings to
more interactive and engaging methods, thereby providing com-
prehensive insights into analytical workflows. These insights have
informed the development of a set of design considerations to steer
the future development of our tool.

Based on our findings, we present NotePlayer, an authoring tool
seamlessly integrating notebook cells with video segments. Pow-
ered by a computational engine, NotePlayer simplifies the creation
and editing of videos. Initially, NotePlayer extracts data, encompass-
ing both input and output cells, from the user’s original notebook.
This process effectively demonstrates the logical flow inherent
in the analytical process by analyzing code cells. Users can then
navigate through this logical flow, confirming each scene as they
progress. Within each scene, the tool generates initial narration by
leveraging detailed code cell information and essential elements,
such as specific code snippets and corresponding user annotations.
This process utilizes the robust natural language understanding ca-
pabilities of Large Language Models. Additionally, after fine-tuning
the narration and integrating it with specific visual elements and
preset settings, such as animations and layouts, an initial dynamic
presentation is crafted. Supporting this process is the finalization
of a "design script" that organizes the streaming content into coher-
ent scenes, seamlessly integrating code, annotations, and visuals.
To ensure accessibility, text-to-speech technologies are utilized to
automatically generate audio narrations. Furthermore, NotePlayer
facilitates iterative refinement of streaming content, enabling users
to edit their presentations, adjust annotations, and enhance narra-
tions. This iterative process enhances the quality and consistency
of the streaming media.

In evaluating NotePlayer, we conducted a user study and re-
ceived positive feedback regarding its usability and learnability.
Participants highlighted that NotePlayer significantly streamlines
the creation of expressive Jupyter notebook tutorial videos, pro-
viding clear guidance and ease of learning, thus improving their
communication process. We view the integration of tutorial videos
as a valuable supplemental tool that complements traditional learn-
ing methods. Our method provides additional support, effectively
demystifying complex topics, increasing engagement, and offer-
ing flexible learning options. The contributions of this work are
summarized as follows:

• We conduct a formative study and content analysis to gain a com-
prehensive understanding of the general workflow, challenges,
and common patterns involved in existing programming tutorial
video creation practices.

• We create NotePlayer, a tool seamlessly connecting notebook
cells with video segments, employing a computational engine
embedded with language models to facilitate flexible video cre-
ation and editing.

• We showcase the effectiveness of NotePlayer through a user
study, illuminating the tool’s advantages and limitations.

2 RELATEDWORK
We examine previous works from two angles: Programming Tuto-
rial Videos and Storytelling with Computational Notebooks.

2.1 Programming Tutorial Videos
Tutorials are extensively utilized as a platform for sharing coding
and programming expertise among programmers [24]. They com-
monly include elements such as source code, textual explanations,
code examples, and multimedia components, encompassing images
and videos [46, 61].

Programming tutorial videos play a vital role in providing an
intuitive understanding of code and explaining analytical processes
clearly. These videos are commonly found on formal online plat-
forms such as YouTube [59], MOOCs [53], and Khan Academy [60].
Recent studies support the effectiveness of tutorial videos in data
science education. Kross et al. [37] discussed the challenges faced
by data science instructors in integrating code, data, and commu-
nication within teaching workflows, emphasizing the importance
of effective communication. Guo et al. [20] showed that interac-
tive and concise videos significantly boost student engagement
and understanding, essential for clarifying complex data science
techniques and coding practices. Moreover, Lu et al. [40] inves-
tigated the impact of tutorial videos on teaching practical skills,
while Wang et al. [67] confirmed their effectiveness in increasing
engagement in Computer Science and Engineering courses. These
findings highlight the benefits of tutorial videos in enriching both
theoretical understanding and practical application in data science.

Creating effective programming tutorial videos requires a com-
bination of technical skills, educational insights, and an under-
standing of viewer engagement [35, 43, 74]. Bowles-Terry et al. [7]
conducted research on learner preferences for online video tuto-
rials, establishing a foundational understanding of learners’ view-
points in tutorial creation. Subsequently, Weeks et al. [74] furthered
the discourse on video tutorial development by exploring optimal
practices, emphasizing the critical role of usability, findability, and
pedagogical efficiency in tutorial design.

Numerous studies have delved into the development of inno-
vative tools for crafting tutorial videos. For instance, Mysore et
al. [46] introduced the Torta system, which automates the creation
of mixed-media tutorials for both GUI and command-line appli-
cations by tracing activities across the operating system. Bao et
al. [3] presented VT-Revolution, an interactive system aimed at
enhancing the creation and viewing experience of programming
video tutorials. Additionally, various studies have aimed to enhance
interactivity, context, and clarity within programming tutorials.

NotePlayer: Engaging Jupyter Notebooks for Dynamic Presentation of Analytical Processes UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Khandwala et al. [34] developed Codemotion, a tool focused on
enriching interactivity in tutorial videos, highlighting the potential
of interactive elements in making tutorials more engaging and ef-
fective for learners. Similarly, Buffardi et al. [9] explored integrating
videos with programming practice, underscoring the importance
of contextual and relatable content through the inclusion of di-
verse perspectives in tutorial videos. Moreover, Yadid et al. [78]
introduced a novel approach for extracting code from program-
ming tutorial videos, emphasizing the significance of clarity in code
presentation for enhanced learner comprehension.

Our focus is on enhancing communication in the realm of data
analysis within the Jupyter Notebook environment, which has often
been overlooked in traditional programming tutorial videos [55].
Specifically, there is a gap in understanding the unique workflows
of data analysts as they create programming tutorial videos within
Jupyter notebooks. To bridge this gap, our work delves into the
challenges faced during the creation of such videos and seeks op-
portunities to streamline this process.

2.2 Storytelling with Computational Notebooks
This section delves into the Computational Notebook, a widely
adopted platform extensively utilized by data analysts for their
day-to-day tasks [25]. Each notebook is organized with numerous
input and output cells that facilitate code editing and the display
of results [36]. The integrated interface for code and results aligns
well with the needs of data analysis, supporting iterative coding
and immediate result review [23, 33]. Despite the benefits that
data analysts derive from computational notebooks, these tools
also present limitations. Rule et al. [52] highlighted the conflict
between exploration and structured explanation within notebooks.
Chattopadhyay et al. [12] identified nine significant concerns, in-
cluding analysis, code management, and collaboration issues. These
limitations can hinder effective storytelling within computational
notebooks.

Recent research hasmade significant advancements in improving
storytelling within computational notebooks, introducing innova-
tive tools and methods for enhancing data analysis and presen-
tation [11, 22, 32, 44, 47, 82]. We categorize these enhancements
into two main sections: Analysis Enhancements and Communica-
tion Enhancements. In terms of Analysis Enhancements, our focus
is on tools that enhance user engagement and facilitate collabora-
tion [66, 70, 75]. For instance, Head et al.[23] introduced methods
for gathering code within notebooks to manage messy code struc-
tures. Wang et al.[64] presented a Jupyter extension designed to
foster discussions around notebooks and facilitate collaborations.
When it comes to Communication Enhancements, the emphasis is
on novel approaches to presenting and conveying analytical pro-
cesses [65, 73]. Wenskovitch et al.[77] introduced Albireo, a tool
that visually summarizes notebook structures, aiding in the ex-
ploration of complex data stories. Additionally, NB2Slides[83] and
Slide4N [69] automated the extraction of key points from note-
book cells, organizing them into presentation slides for clearer
communication. Furthermore, Li et al.[38] introduced Notable, an
on-the-fly assistant that enhances data documentation and orga-
nization, improving the clarity of data narratives. Lin et al.[39]
presented InkSight, a plugin that enhances chart documentation

by allowing users to intuitively sketch their insights directly on
visualizations. Together, these efforts enrich the experience of data
analysts using notebooks, facilitating the creation of more engaging
and collaborative storytelling within notebooks.

However, existing efforts have predominantly concentrated on
reporting data facts or findings, neglecting the potential of stream-
ing as a pivotal presentation medium capable of integrating nar-
ration and animation effects. In response, our work is oriented
towards embracing conventional practices seen in programming
tutorial videos. We take strides towards enabling a fluid and dy-
namic portrayal of the entire analysis process within computational
notebooks, thereby enhancing communication.

3 FORMATIVE STUDY
Our study begins by examining the prevalent practices among data
analysts in communicating their analytical processes, primarily
through jupyter notebooks, to their audience.

3.1 Participants and Procedure
We conducted semi-structured interviews with four individuals,
identified as P1-P4, all of whom are practitioners in Data Science
(DS). They all have created tutorial notebook videos during the
epidemic. Each participant brings over a decade of experience in
computational data processing, along with several years of exper-
tise specifically with Jupyter notebooks. The interviews with each
participant were comprehensive, lasting approximately 30 minutes.

3.2 Data Analysis
We conducted thematic analysis [17] on the interview data and con-
structed an affinity diagram to explore the patterns of data analysts’
workflows and the themes of challenges they encountered. Two re-
searchers independently analyzed and open-coded the transcribed
interview responses. Any discrepancies in the coding process were
addressed through discussion and reconciliation to ensure consis-
tency and accuracy in representing the participants’ perspectives.
Subsequently, the researchers utilized affinity diagramming to cate-
gorize the initial codes onto cards. Through iterative discussion and
organization of the codes, several recurring patterns and themes
were identified from the collected data.

3.3 Key Findings
3.3.1 General Workflow. According to the insights obtained from
the interviews, the workflow of creating Jupyter Notebook tutorial
videos involves five main steps:
• [S1] Planning: In this initial stage, the data analyst carefully
plans the content and structure of the notebook. This often in-
cludes removing irrelevant code cells and adding explanatory
comments for clarity.

• [S2] Recording the tutorial: After planning, the data analyst
proceeds to capture the live coding session using screen record-
ing software within the computational notebook environment.
This step provides the core visual aspect for the audience, demon-
strating the code-writing process in detail, step-by-step.

• [S3] Providing oral narration: As the code unfolds on the
screen, the data analyst simultaneously provides an oral narra-
tive that complements the visual content. This narration goes

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Yang Ouyang, Leixian Shen, Yun Wang, andQuan Li

beyond mere commentary, offering a detailed explanation of the
purpose behind each code snippet.

• [S4] Refining and enhancement: To further enrich the view-
ing experience, data analyst often refine the recorded content
using presentation or video editing software. This process in-
volves removing imperfections, such as minor verbal missteps,
and incorporating enhancements like text captions, graphics, or
animations to highlight key concepts and make the tutorial more
engaging for learners.

• [S5] Exporting and sharing: Finally, the meticulously crafted
instructional videos are distributed across various online plat-
forms, including learning portals and social media, to reach a
wide audience.

3.3.2 Challenges Encountered by Creators. Following the workflow,
we proceed to delineate several challenges (C1-C4) encountered
during this process:

C1. Unclear logical progression: Creating a video tutorial
necessitates a meticulous, step-by-step demonstration. Despite the
plannning, the logic is basically based on the code itself, not the
planned content of the video. Throughout recording, it’s imperative
to adhere to a coherent logical sequence, ideally mirroring the logic
of the underlying code. However, this aspect is frequently over-
looked, with explanations often tied solely to the contents of the
notebook. As noted by P4, “Sometimes, I catch myself just jumping
into the code without giving enough context, making it tough for
viewers to follow smoothly.” To address this, creators could consider
briefly pausing or interjecting comments within the code to denote
the completion of each phase. As emphasized by P3, “Keeping a
clear logical flow is key. You’ve got to lead viewers step by step, making
sure it all makes sense with how the code runs.” Without clear articu-
lation of the logic, viewers may encounter difficulty pinpointing
the corresponding part of the video for their code-related issues.

C2. Lack of visual emphasis in explanations: Recorded videos
often fail to highlight explanations for complex code segments, de-
spite demonstrating the raw process. While verbal emphasis may
be given during recording, the scene is typically depicted as a static
image, lacking visual aids. As noted by P2, “While I was record-
ing, I noticed that even though I stressed things verbally, the absence
of visuals might’ve made it hard for viewers to get it. I might toss
in some visuals and animations when I share the clips to help with
that.” Without the reinforcement of visual elements, viewers may
struggle to grasp crucial concepts, hindering their understanding
and progress. As emphasized by P3, “Adding more visuals would’ve
really made the explanations a lot clearer.”

C3. Trial-and-error: Making instructional videos involves a se-
ries of trial-and-error processes in recording and editing to achieve
clarity and coherence. However, these procedures can be time-
consuming, particularly when errors such as slips of the tongue or
unexpected interruptions occur during screen recording. As pointed
out by P1, "Editing out errors and unnecessary content really ate up
a lot of my time. I mean, there were moments where I stumbled over
my words, and unexpected interruptions threw me off track during
recording.” Moreover, recording is essentially irreversible. As noted
by P4, “You know, when I’m almost done recording and then find an
issue with the code I just did, it’s such a pain realizing I might have to
redo everything from the start.” Consequently, significant time and

effort must be dedicated during the video editing phase to identify
and rectify these errors from the outset, ensuring the creation of
high-quality content.

4 CONTENT ANALYSIS
To comprehend the characteristics and design patterns within
Jupyter notebook tutorial videos, we embarked on a content analy-
sis. Our first step involved gathering a collection of high-quality dig-
ital resources from various online platforms, including Youtube [59],
MOOCs [53], and Khan Academy [60]. We categorized 38 videos
based on their code-cell structure into 372 sections, each containing
the textual narrative and corresponding visuals. Our analysis of
Jupyter tutorial videos concentrated on three key areas: (1) cate-
gorizing narration, (2) summarizing creators’ behaviors, and (3)
exploring the correlations between narration and behaviors.

4.1 Categorizing Narration
The analyzed videos demonstrate similar narrative styles, which
are categorized into three major and eight minor categories, with
examples provided in Table 1. First, Informative Texts offer crucial
information to help viewers understand the Jupyter tutorial content.
• Background: This provides contextual information to help the
audience understand the context behind the code cell. For exam-
ple, “we’re going to explore real-world economic data using Python
and Pandas.”

• Code Interpretation: This explains the purpose or function
of the code, making it more accessible to viewers. For instance,
“We’re using Seaborn for data visualization, so let’s ’import Seaborn
as SNS’.”

• Result Description: This clarifies the output of a code cell,
explaining what the results indicate. For example, “From this bar
plot, we can see that electronic accessories are purchased in the
highest quantity.”

• Insight: This presents the video creator’s viewpoints or analy-
ses regarding the results. For instance, “There is no relationship
between the cost of goods sold and ratings.”

• Conclusion: This summarizes key takeaways and often appears
at the end of a significant analysis phase. For example, “Perform-
ing EDA, such as univariate, bivariate, and multivariate analysis,
allows us to understand the underlying patterns and relationships
within the dataset.”

Second, Structural Texts are utilized for organizational pur-
poses, enhancing the video’s coherence.
• Transition: This provides information to help the audience shift
focus from one topic to another, e.g., “So the next thing we’re going
to do is try to pull in some data about multiple data series and then
compare them side by side.”

• Direction: This directs the audience’s attention to specific ele-
ments within a cell or code snippets, such as “Special attention is
given to the statistical summaries.”

Finally, Interactive Texts seek to actively engage the audience
with the content.
• Question engages the audience by prompting them to consider
upcoming content or outcomes, as in, “I’m going to show you
how we’ll do that here, right.”

NotePlayer: Engaging Jupyter Notebooks for Dynamic Presentation of Analytical Processes UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Table 1: Examples of Narration Classification: 3 Major and 8 Minor Categories

Contexts Examples of Narration
Informative Text -

Background In this video, we’re going to explore some real-world economic data using Python and pandas.
Code Interpretation Also, we use Seaborn for data visualization, so let me "import Seaborn as SNS".

By further narrowing our dataset to "Region == ’Italy’" we ensure that our analysis is
geographically focused.

Result Description The result is a pandas dataframe that shows us the series ids.
From this bar plot we can see that electronic accessories are purchased in the highest quantity.

Insight There is no relationship between cost of goods sold and ratings.

Conclusion Performing EDA, such as univariate, bivariate, and multivariate analysis, allows us to understand
the underlying patterns and relationships within the dataset.

Structural Text -

Transition We started with importing essential libraries, setting up our environment, and loading the dataset
to prepare for the exploratory data analysis.
So the next thing we’re going to do is try to pull in some data about multiple data series and then
compare them side by side.
So now our next step in this session we have to get statistics about the new data set.

Direction Pay close attention to the practical application of EDA techniques.
Special attention is given to the statistical summaries.

Interactive Text -
Question i’m going to show you how we’ll do that here right?

Does the cost of goods sold affect customer ratings?

Figure 1: Boxplot of durations for different video segments.
Mean durations are as follows: Background at 104.7s, Code
Interpretation at 126.7s (the longest), Result Description at
94.9s, Insight at 99.5s, Conclusion at 73.5s (the shortest), Tran-
sition at 105.6s, Direction at 118.3s, and Question at 77.4s.

During our analysis of the video data, illustrated in Figure 1, we
observed varying durations for different segments. Notably, Code
Interpretation segments stood out as the longest, averaging 126.7
seconds, closely followed by Direction segments, which averaged
118.2 seconds.

4.2 Summary of Behaviors
The creators exhibited a wide range of complex behaviors in the
videos. To analyze these behaviors systematically, we conducted a
comprehensive summary and examination of each frame within our
collected videos. To achieve this, we designed a structured triplet
group [sender, receiver, and behavior] to analyze these behaviors.
For instance, “Bob selected some code snippets in a code unit” or “Bob
elaborated on a code snippet in detail” are typical examples of this
framework. In this context, the sender refers to the creator, while the
receiver encompasses both the notebook and the audience. Through
this detailed analysis, we identified a range of behaviors relevant
to knowledge sharing and data presentation, omitting actions not
directly related to these objectives, such as browsing the internet or
taking short breaks. Our analysis primarily centered on the receiver,
focusing on both audience engagement and the interpretation of
the code presented. Below are the final five behaviors identified:

• Speak: The instructor verbalizes the narration throughout the
data analysis process.

• Live Coding: The instructor writes, edits, and executes code in
real time within a Jupyter Notebook.

• Select: The instructor highlights key parts of specific pieces of
code.

• Annotation: The instructor adds comments and annotations
within the code.

• Pause: The instructor pauses to prompt the learner to consider
what might happen before revealing the outcomes.

• Scroll: The instructor navigates through code cells one by one.

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Yang Ouyang, Leixian Shen, Yun Wang, andQuan Li

4.3 Correlation Between Narrations and
Behaviors

Our interview-based research highlighted the necessity for creators
to align their spoken narrations with on-screen actions, especially
during the validation of visual components. This synchronization
creates a reliable and authentic foundation for showcasing the ob-
jectives behind the notebooks. We noticed that while instructors
generally maintain a steady flow of narration throughout the pro-
cess, there are instances during live coding where the continuity of
narration may diminish. Through this comprehensive analysis, we
identified three key patterns (P1-P3) in the interplay between nar-
ration and behavior, which could significantly improve our video
creation process:

P1: Strategic Emphasis through Annotations, Selections,
Directions, and Explanations: In our video tutorials, we strate-
gically utilize annotations and selections, combined with direc-
tional guidance and thorough explanations of code segments, to
achieve effective emphasis. By using visual and verbal cues to high-
light key concepts or critical parts of the code, instructors ensure
that important information stands out, making it more memorable
for the audience. This emphasis not only captures attention but
also helps anchor the audience’s focus on crucial points. By pro-
viding focused explanations alongside selective highlighting, we
effectively guide learners’ attention to essential code components,
simplifying complexities and clarifying their functionalities.

P2: EnhancingCohesion throughTransitions and Scrolling:
Incorporating transitions, such as introducing new coding exam-
ples or moving to upcoming topics, ensures a seamless and unin-
terrupted flow of information. Instructors achieve this by smoothly
scrolling from one code cell to the next, maintaining a cohesive and
engaging narrative that prevents the tutorial from feeling disjointed
or fragmented.

P3: Encouraging Engagement through Question Prompts
and Pauses: Integrating questions into the narration and provid-
ing brief pauses encourages active participation from the audience.
This interactive approach stimulates critical thinking and enhances
the learning experience by making it more dynamic and engaging.

5 DESIGN CONSIDERATIONS
Through our formative study and content analysis, we uncov-
ered significant patterns and challenges in creating tutorial videos
for conveying analytical processes in computational notebooks.
Throughout our discussions, it became clear that relying solely
on screen recording formats might not adequately communicate
these processes. Our collective deliberations led us to a common
objective: to improve the clarity and understanding of the com-
putational notebook’s analysis process by tackling the challenges
and implementing the identified patterns. This approach entails
transitioning from static screen recordings to more interactive and
engaging methods, thereby offering a comprehensive insight into
the analytical workflows. These insights have led to the following
crucial design considerations:

DC1: Identifying the overview of logical progression.We
aim to meticulously design and construct the script for our ultimate
presentation. Resolving C1 demands creating a thorough plan that
covers all aspects of the presentation content. This plan should

include identifying the logical flow of code analysis, highlighting
key discussion points, and determining areas of emphasis. The tool
should support users in gaining a comprehensive overview of the
logical progression.

DC2: Preserving patterns and enhancingVisualization. The
tool should include features designed to align with the key patterns
identified in section 4.3 to foster a deeper understanding and en-
gagement. An example of this is enabling annotations within code
cells, enabling users to directly link code segments to explanations,
thereby enriching the analytical narrative. Furthermore, the tool
should incorporate visual enhancements (C2) like dynamic high-
lighting or graphical overlays to emphasize these patterns, making
the analysis more intuitive and visually appealing.

DC3: Facilitating rapid preview for expediting creation.
To address C3, the rapid preview feature allows users to promptly
evaluate the generated content, ensuring it aligns with their ex-
pectations and requirements. This facilitates rapid iterations and
adjustments, leading to the creation of high-quality content.

DC4: Offering flexible editing options for elements. Build-
ing upon DC3, we introduce DC4. When crafting content, refining
specific segments is often required after generating the initial ver-
sion. The system should offer flexible editing capabilities to enable
precise fine-tuning, allowing users to seamlessly modify annota-
tions and polish narrations. This ensures users can refine details
with ease, ultimately achieving the most optimal presentation in
their final output, thus addressing C3.

6 NOTEPLAYER
In alignment with our defined design considerations, we develop
NotePlayer. The target of NotePlayer is to enhance the seamless
and dynamic presentation of the entire analysis process within
computational notebooks, facilitating effective communication and
understanding between analysts and the notebook environment.

6.1 Overview
As shown in Figure 2, NotePlayer consists of two main compo-
nents: interactive modules and computational engines, which are
intricately interconnected to optimize the user experience. The in-
teractive modules are primarily focused on interface and interaction
designs, providing users with intuitive controls and real-time visual
feedback. On the other hand, the computational engines serve as
the backbone of NotePlayer, supporting the functionalities of the
interactive modules by processing data, executing algorithms, and
generating outputs.

To be specific, the interactive modules consist of four parts: the
Logic Flow Representation (Figure 3(A)), the Organization Panel
(Figure 3(B)), the Emphasis Record (Figure 3(C)) and Scene Play-
back (Figure 3(D)). The Logic Flow Representation offers an initial
visualization of the logical flow of the notebook code, providing
users with a foundation that they can refine and improve upon
during the editing phase (DC1). In the Organization Panel, users
have access to essential elements such as code explanations (Fig-
ure 3(B1)), narration sections (Figure 3(B2)), and detailed notebook
information (Figure 3(B3)), which are crucial for crafting dynamic
presentations. Within the Organization Panel, users can fine-tune

NotePlayer: Engaging Jupyter Notebooks for Dynamic Presentation of Analytical Processes UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Figure 2: The overview of NotePlayer presents two primary components: interactive modules and computational engines.
The interactive modules provide intuitive controls and real-time feedback, while the computational engines, serving as the
backbone of NotePlayer, process data and generate outputs for the interactive modules with assistance from language models.

their content by revising, reorganizing, deleting, and grouping in-
formation, contributing to a streamlined editing process (DC4). The
Emphasis Record logs sections of the notebook where users apply
the "Emphasis" pattern, facilitating focused editing and refinement
(DC2). Both views are interactive and synchronized, ensuring that
any modifications made in one view are automatically reflected in
the others.

The Manipulation Workplace, consisting of the Logic Flow Rep-
resentation, Organization Panel, and Emphasis Record, provides
users with a comprehensive toolkit for refining and organizing
elements to create dynamic notebooks. Once users have arranged
these elements to their satisfaction, they can preview their work
in the Scene Playback (Figure 3(D)) by activating the
button located on the right side (DC3).

The tool can be seamlessly integrated into Jupyter Lab, allowing
for direct incorporation into the notebook environment, which
facilitates easy access and sharing.

6.2 Interactive Modules
6.2.1 Logic Flow Representation. This view presents a high-level
overview of the notebook’s code logic, initially as a straightforward
flowchart from top to bottom. It succinctly summarizes the con-
tents of each code cell with a brief description, offering a quick and
intuitive understanding of the code’s overall flow and functionality
(DC1). Within the Logic Flow Representation, selecting a block of-
fers users two key functionalities: 1) Assess Related Codes: Relevant
details of the notebook’s code scroll into view within the Organi-
zation Panel, allowing scrutiny of the core functions or objectives
achieved. 2) Hierarchical Organization: Users are prompted to break
down overly complex code blocks into more manageable segments,

enhancing clarity and efficiency. Additionally, non-essential blocks
can be hidden to maintain focus on relevant code sections.

This visualization is designed with two primary considerations:
Firstly, it caters to users who, while understanding the basic logic of
their codes, benefit from a simplified flow diagram to navigate and
locate specific code segments more effectively. Secondly, it empow-
ers users to refine the logical progression, particularly emphasizing
the transition from code to video when creating instructional con-
tent.

6.2.2 Organization Panel. Within the Organization Panel, users are
provided with the convenience of directly accessing the raw codes
from their notebooks. This feature facilitates interactive engage-
ment with individual code cells, allowing users to pinpoint specific
sections that require attention. Upon selecting a block within the
Logic Flow Representation, the corresponding section from the
notebook is automatically highlighted, enabling users to interact
with and manipulate these codes. Next, we outline the functional-
ities in alignment with the patterns discussed in section 4.3: [F1]
Conducting emphasis, [F2] Enhancing cohesion, and [F3] Fostering
interaction (DC2):

[F1] Conducting emphasis: Informed by the formative study
and content analysis, we conceptualize these code segments as
individual “scenes” that users can manipulate, as elaborated in
section 6.3.1. For instance, as shown in Figure 4, if users deem
the "groupby(’Continent’)" section within their code as crucial for
emphasis during presentations, they can easily highlight this seg-
ment using their mouse and confirm their choice by clicking the

button. This action increases the font size of the se-
lected code snippet for enhanced visibility and triggers a pop-up

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Yang Ouyang, Leixian Shen, Yun Wang, andQuan Li

Figure 3: The Interactive Modules of NotePlayer comprise (A) the Logic Flow Representation, (B) the Organization Panel, (C)
the Emphasis Record, and (D) Scene Playback. The Organization Panel features crucial elements: (B1) code explanation and
(B2) narration section, along with (B3) detailed notebook information, all essential components of the content creation process.

window. Within this window, users have the opportunity to elab-
orate on their reasons or objectives regarding the chosen code
snippet. Consequently, an “emphasis” visual element is generated,
including both the original code and the user’s annotations. This
process enriches the presentation with valuable context and in-
sights (DC2).

Once users have thoroughly reviewed a code cell from start
to finish, they can choose to generate a corresponding narrative
for that segment by clicking the button. Each sentence
in the narrative can be linked with one or two “emphasis” visual
elements (Figure 5(2)), providing a detailed explanation or high-
lighting specific code parts. Users retain the flexibility to modify
these narrations (DC4). By clicking on a sentence, they can access
the associated “emphasis” visual element, facilitating interactive
and in-depth exploration of the code’s key points. This design was
naturally derived from our inspection of Pattern 1 in section 4.3. By
using strategic annotations, selections, and directional guidance,

we ensure that key concepts and critical parts of the code are effec-
tively highlighted. This method captures attention and anchors the
focus on crucial points, simplifying complexities.

[F2] Enhancing cohesion: Ensuring cohesion among code cells
is essential for maintaining a seamless analytical process. Efficiently
streamlining transitions can be accomplished by strategically plac-
ing connecting words like “focusing on” or “by further” at the
beginning and turning points of sections (refer to Figure 5(1)), thus
facilitating clear narrative shifts. Moreover, during the narration
generation phase, these textual transitions are seamlessly integrated
to ensure a coherent flow. Incorporating visual cues, such as “fade
in” and “fade out” animations, not only enhances the narrative
experience but also introduces an innovative method for transi-
tioning between code cells. By replacing traditional scrolling with
these visual transitions, we can enhance the engagement and in-
tuitiveness of navigating between code cells. This design aims to
maintain cohesion among code cells, aligning with the common

NotePlayer: Engaging Jupyter Notebooks for Dynamic Presentation of Analytical Processes UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Figure 4: Steps for conducting emphasis: (1) select code snip-
pet, (2) click the button, and (3) add annotation in the pop-up
window.

Figure 5: The narration presentation includes three key types:
1) transition, 2) direction, and 3) question. Users can click
the Q button to transform the sentence from declarative to
an interactive question-and-answer format.

practice of organizing content based on cells in many notebook-
based tools [38, 39, 83], which requires users to effectively structure
their notebooks beforehand. Strategically placing connecting words
at section beginnings and turning points facilitates clear narrative
shifts and ensures coherent flow during narration generation.

[F3] Fostering interaction: Once the narration is generated,
it predominantly consists of declarative sentences. However, to
enhance user engagement and stimulate analytical thinking, users
are provided with the option to select specific sentences and con-
vert them from declarative to an interactive question-and-answer
format by clicking the button. For instance, as illustrated in
Figure 5(3), the statement “The use of *head()* to preview our filtered
data ensures its accuracy.” can be transformed into “How can we
verify the accuracy of our filtered data? Just use the *head()* function
to preview the filtered data.” Based on the observation of pattern
3 in section 4.3, we supplement this design to foster interaction.

This feature aligns with studies [10, 62] indicating that embedding
questions in educational content can enhance learning.

Once users have selected the three specific patterns within a
scene, clicking the button will trigger a preview within
the Scene Playback.

We then present Table 2, which summarizes the current visual
effects and narration strategies in video content, corresponding to
the three key purposes: conducting emphasis, enhancing cohesion,
and fostering interaction. Design considerations such as animation
sets are discussed in section 6.3.1. Default visual effects are below:
• Fade in: Gradually introduces elements into the scene, enhanc-
ing visibility and focus.

• Fade out: Slowly removes elements from the scene, creating a
smooth transition to the next content.

• Move to next: Transitions from the current scene to the next,
maintaining viewer engagement through seamless continuity.

• Code Snippet Scaling: Dynamically adjusts the size of code
snippets to express emphasis.

• Code Snippet Shadow: Adds a shadow effect to code snippets
to increase depth and improve legibility against varied back-
grounds.

• Annotation Fade in: Annotations added by the user are smoothly
introduced into the video in bullet form, enhancing the explana-
tory power.

• Annotation Fade out: Gradually fades out annotations, allow-
ing for a clean transition to subsequent content.
Although the current tool features default animations and effects

as listed in Table 2, future enhancements can include a broader
range of animations, a timeline feature for enhanced variability,
and non-linear logic flows for smoother transitions across different
scenarios.

Table 2: Narration Contexts and Visual Effects for different
Purposes in Video Content

Purpose Description Narration Contexts Visual Effects
Conducting
emphasis

Emphasizes key
codes or content - Informative Text

Code Interpretation
Code Snippet Shadow

& Scaling
Annotation Fade in

& Fade out
Remain Fade in

Enhancing
cohesion

Ensures smooth flow
and continuity - Structural Text

Transition Move to Next
Direction Fade in

Fostering
interaction

Engage audience
actively with content - Interactive Text

Question Fade in & Fade out

6.2.3 Emphasis Record. This view is crafted to capture the sec-
tions within the notebook that users identify as significant. Once
users have identified a segment for video production, they can
choose to save these key points (DC3). This feature streamlines
the workflow by providing easy access to important concepts and
code snippets for future reference, thus enhancing the efficiency of
creating coherent and focused video content (DC4).

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Yang Ouyang, Leixian Shen, Yun Wang, andQuan Li

6.2.4 Scene Playback. Scene Playback presents a sequential pre-
view of user-generated streaming content, aligning each scene with
the order depicted in the logic flow representation. To cater to
different viewing preferences and maximize space utilization, a
“zoom” feature is provided. By clicking the button, the gener-
ated video enlarges for enhanced visibility, and the Organization
Panel temporarily hides to expand the playback display area. This
functionality enables users to meticulously inspect their content,
ensuring it meets their standards with greater precision and clarity.
Finally, the ‘Export’ button facilitates the export of all confirmed
scene content as an MP4 file.

6.3 Computational Engines
In this section, we explore the mechanisms through which our
computational engines facilitate the production of streaming con-
tent. First, we examine the implementation of a “design script” that
organizes streaming content into coherent scenes, incorporating
code, annotations, and visuals. Subsequently, we delve into the role
of Large Language Models (LLMs), notably GPT-4, in enhancing
narration and logical flow, enabling customization of emphasis to
align with user preferences.

6.3.1 Design Script. We begin by introducing the concept of a de-
sign script, represented as structured text, as illustrated in Figure 6.

Figure 6: Design script employs a scene-based organizational
structure, grouping a narrative segment and its related details
into a single block. Each scene comprises a "code snippet,"
the user’s "annotation," and the associated "narrative." This
setup is complemented by predetermined sets of animations
and default layouts to streamline content creation.

Scene-based Organization. The majority of research on sto-
rytelling within computational notebooks highlights the use of a
section-based architecture for content organization [21, 69, 77]. This
approach segments the narrative into distinct sections, each linking

a few concise code cells with explanatory texts and relevant visual-
izations. Insights gleaned from our formative study interviews and
content analysis also indicate the widespread adoption of this struc-
tural approach for content streamlining. Drawing on these insights,
we adopt a Scene-based organization, where each section of the
narrative and its corresponding visuals are grouped within a single
block throughout the creating process. This feature facilitates flexi-
ble prototyping of the story, visualizations, and animations while
ensuring their coherence within each scene (DC4).

Component Details. The composition of each scene must be
clearly defined. Each scene revolves around a particular theme and
comprises visual elements accompanied by narration. The core
components of this setup are threefold: a “code snippet”, “the user’s
corresponding ‘annotation”’, and “the corresponding ‘narrative”’.
A single code cell serves as the backdrop for each scene, and a
compilation of these foundational elements forms a cohesive scene.

Layout Sets. In our formative study, we found that layout con-
siderations are frequently overlooked during recording, leading
to suboptimal arrangements that necessitate professional editing
for improvement later on. We establish that “annotation” in a clip
should be positioned near the code cell to ensure coherence and
facilitate comprehension.

Animation Sets. To address the challenges of developing a com-
prehensive animation library, we have opted to use a curated set
of animations from GSAP (GreenSock Animation Platform) [2],
a widely used animation framework. This approach allows us to
concentrate on our primary research goals without incurring the
extensive costs of creating a large library. Our focus is on ensur-
ing that the animations serve their intended purpose rather than
solely aiming for aesthetic appeal. Drawing from insights gained
in our formative study and inspired by existing work on animated
storytelling videos [13, 58, 72], we outline the animation format for
our content. Each fundamental segment, or “clip”, is characterized
by its start time and duration, which correspond to the application
of “enter” animations at the outset and “exit” animations at the
conclusion. Furthermore, within these clips, “emphasis” animations
are strategically employed to highlight key elements (DC2).

Once the design script is finalized and confirmed to meet all
required specifications, it undergoes processing through an ad-
vanced executable program. This program employs Text-to-Speech
(TTS) technology to convert the narrations into audio voiceovers,
culminating in the creation of the intended streaming content.

6.3.2 LLM Assistance. We utilize the advanced natural language
understanding capabilities of the LLM (OpenAI’s GPT-4 model)
to augment the functionality of our tool. Appendix A provides a
detailed list of prompt phrases.

Logic Flow Generation. Leveraging GPT’s adeptness in code
processing and comprehension, this approach guarantees the pro-
duction of high-quality logic flow representations. Prompt engi-
neering is crafted to direct the LLM in processing notebook cells,
utilizing them as input and generating an output organized as a
dictionary with the format “[code-cell index, description, inputs,
outputs]”. This output corresponds to each code cell’s index, of-
fering a succinct overview of its content, detailing the data or re-
sources it utilizes (inputs), and explaining the outcomes or artifacts
it generates (outputs).]

NotePlayer: Engaging Jupyter Notebooks for Dynamic Presentation of Analytical Processes UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

Narration Generation. Initially, we experimented with gener-
ating narrations directly from raw code cells, treating GPT as an
expert in articulating and explaining code [56]. This experiment
demonstrated the model’s ability to generate high-quality textual
responses. However, recognizing the necessity for customized guid-
ance tailored to diverse user needs, we opted to activate the model
only after users highlight their preferred emphasis sections within
the Organization Panel, as elaborated in section 6.2.1. The process
takes complete notebooks, enriched with emphasis elements that
feature code snippets and user annotations. The output generated
includes narrations for each cell, with highlighted “emphasis” ele-
ments aimed at effectively conveying the user’s intent. Users have
the option to adjust and finalize text responses before the generation
of streaming content begins.

7 EVALUATION
We evaluated NotePlayer through a usage scenario to showcase its
expressiveness and a user study to verify its usability.

7.1 Usage Scenario
We illustrate NotePlayer’s capability to dynamically present analyti-
cal processes within notebooks through a usage scenario involving
Bob, a data analysis professional. While proficient in data analysis,
Bob lacks expertise in communication techniques and advanced
video editing tools. Typically, he shares his processes by recording
his screen and providing verbal explanations.

Bob recently concluded a data analysis project on COVID-19 data
and aims to share his methodology dynamically. He had finalized
the coding in his Jupyter notebooks and outlined a preliminary plan
for the presentation’s content and structure. Initially, Bob integrated
NotePlayer into Jupyter Lab as a library (Figure 7-a). Upon selecting
his notebooks, the system generated a logic flow representation
based on their contents (Figure 7-b). This feature offered a succinct
summary of each code cell, facilitating a swift understanding of the
code’s structure and function (DC1). Bob found this representation
beneficial for confirming his initial concept of the logic flow. He can
inspect each block to access its corresponding code. Satisfied with
the descriptions, he chose to make only a few slight adjustments to
the names.

He concentrated on the “Germany COVID-19 Data” code cell
(Figure 7-c), deeming the “Case_Type == ‘Confirmed”’ section cru-
cial for his presentation. Bob highlighted this section, enlarged its
font size, and annotated it as “Filter out the confirmed cases”. This
action created an “emphasis” element (Figure 7-d), recorded in the
Emphasis Record View (Figure 7-e). Similarly, he emphasized the
“Country_Region == ‘Germany”’ code snippet with an annotation
“Filter out data for Germany” (Figure 7-d).

After meticulously reviewing the code cell from start to finish, he
chose to craft a narrative by engaging the “Narration” button (Fig-
ure 7-f). Satisfied with the resulting narration, he believed it adeptly
draws attention to the key points he wished to highlight, maintain-
ing coherence and facilitating smooth transitions. Subsequently,
Bob pressed the ‘generate’ button to initiate a preview within the
Scene Playback of NotePlayer (Figure 7-h), showcasing the scene
corresponding to the selected code cell. To optimize his view, he
utilized the “zoom” button, enlarging the video and temporarily

concealing the Organization Panel. Bob watched the approximately
1-minute-long stream and was content that the presentation effec-
tively conveys his message. He appreciated the synchronization of
visual and animation effects with the narration.

Bob, feeling that the narration could be more engaging, decided
to improve it. He planed transform the last sentence into an interac-
tive question-and-answer format for increased viewer engagement
(Figure 7-g). After selecting the sentence, he clicked the “Q” button,
revealing the transformed interactive content. Bob was intrigued
by this feature and believed it will enhance viewer interaction with
the video. Upon completing the modifications, Bob clicked the “gen-
eration” button again and promptly observes the updated content
in the playback (Figure 7-h), a process taking just a few seconds.
Overall, crafting this small cell scene, along with adjustments, re-
quired about 6 minutes to produce a 1-minute stream. Impressed
by the efficiency, Bob excitedly exclaimed, “Cool. Only 7 minutes
have passed. Let’s ship all the notebooks!” Finally, Bob previewed
the generated tutorial video shown in Figure 8, and was satisfied
with its effectiveness.

7.2 User Study
We conducted a user study to verify the effectiveness and usability
of NotePlayer.

7.2.1 Participants. For this study, we recruited 12 participants,
comprising five females and seven males, all of whom have ex-
perience in sharing Jupyter notebooks, identified as P1-P12. The
group includes computer science educators and graduate students
with a focus on data analysis. None of the participants had any
involvement in the system’s design or the preliminary study, and
they indicated having minimal to no familiarity with professional
video editing tools.

7.2.2 Materials and Data. We provided the participants with pre-
designed notebooks aimed at analyzing a COVID-19 dataset. Along-
side the raw notebook, we also supplied them with various pre-
extracted key points. This was done to ensure that the user study
remained focused on content planning and video creation, thus
facilitating clearer communication.

7.2.3 Procedure. The user study comprises three distinct sessions:
(1) a preparatory phase consisting of an introduction and a demon-
stration example, (2) a creation session allowing participants to
engage in the authoring process, and (3) a post-study evaluation to
gauge preferences regarding system utility. Each participant com-
pleted the entire study within approximately 60 − 70 minutes and
received a $15 gift card at the conclusion of the interview session
as compensation.

Preparation. The user study began with a 15-minute introduc-
tion, elucidating the design objectives of our project. Subsequently,
a 20-minute demonstration was provided, elucidating the utilization
of our system, encompassing the setup of visual elements, narra-
tions, and editing interactions within a sample Jupyter notebook.
Participants were then encouraged to autonomously explore all
functionalities and interactions of the system, with the liberty to
pose questions as required. This preparatory phase was designed to
furnish participants with the requisite knowledge for proficiently
crafting videos using our tool.

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Yang Ouyang, Leixian Shen, Yun Wang, andQuan Li

Figure 7: The user’s progression in crafting a dynamic presentation using NotePlayer follows these steps: (a) integrating
the tool into the notebook, then (b) showcasing the Logic Flow Representation. Next, the user (c) directs attention to the
“Germany COVID-19 Data” code cell and (d) applies emphasis operations. Following this, (e) the Emphasis Record is displayed.
Subsequently, (f) the narration linked to the code cell and user annotations is introduced. This is followed by (g) adjusting the
narrative style from declarative to interactive question-and-answer format, and finally, (h) demonstrating the Scene Playback.

Figure 8: The video example generated for the usage scenario by NotePlayer. The example includes a sequence of annotations
and animations. These will be triggered when the audio narration reaches the corresponding segment.

Creation. After the tutorial, participants were encouraged to
utilize our system to craft their own Jupyter notebook videos, lever-
aging pre-extracted notebook examples for inspiration. They had
the flexibility to consult provided slides and request assistance as
required. Subsequently, each participant presented and deliberated

on their video. This creation phase was allotted a duration of 15 to
25 minutes, providing ample time for the task.

Post-study evaluation. Once participants concluded their ex-
ploration and creation of notebook videos, they were tasked with
completing a post-study questionnaire utilizing a 5-point Likert

NotePlayer: Engaging Jupyter Notebooks for Dynamic Presentation of Analytical Processes UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

scale. Here, a rating of 1 indicated “strongly disagree”, while 5 repre-
sented “strongly agree”. The questionnaire’s objective was to assess
the usefulness, ease of use, and overall satisfaction with our sys-
tem [41]. Following this, we conducted semi-structured interviews
with each participant to gather qualitative feedback.

7.2.4 Results and Findings. We collected participants’ subjective
evaluations through an 11-question survey and acquired qualitative
feedback about our system through semi-structured interviews. Fig-
ure 9 illustrates the survey questions along with the average ratings
provided by users. In general, participants agreed that NotePlayer
is an effective tool for creating expressive Jupyter notebook videos,
providing clear guidance and being easy to learn. There was a
notable preference among participants to utilize NotePlayer for
streamlining the video prototyping process.

Usability. All participants unanimously concurred that our tool
significantly streamlines the process of creating programming tu-
torial videos within notebooks, markedly reducing the necessity
for manual efforts. P3 specifically emphasized the tool’s usability,
stating, “It does not require professional video editing capabilities.”
This semi-automatic approach notably boosts productivity for data
analysts. Moreover, participants reported the tool’s efficiency in
content generation, with P1 remarking, “Taking six minutes to gen-
erate a one-minute video is very efficient. It can save a lot of time.”
Additionally, P11 highlighted the tool’s efficacy in conveying the
user’s intention, expressing, “I feel the tool is efficient for data ana-
lysts, given the intended analytical narrative to be communicated.”

Two participants expressed their preference for the Logic Flow
Representation feature. P2 stressed its significance in comprehend-
ing the structure of the video, stating, “The Logic Flow representation
illustrates the distribution of code cells in notebooks to explain an
analytical process, providing a clear overview of the video’s purpose.”
Similarly, P4 noted, “It’s easy to use because it follows the nature ’cell’
design of Jupyter notebooks.”

Learnability. The majority of participants found learning and
utilizing the integrated features of our system to be intuitive and
straightforward. P6, a data analyst with limited experience in video
creation and editing, remarked, “I can easily learn to share what I’m
thinking in my notebook analysis through dynamic means.” Addi-
tionally, regarding the entire creation process with the tool, many
participants suggested that our system ensures a smooth flow in
both creating and editing operations. P2 commented, “The entire
process is smooth and natural.” Similarly, P3 mentioned, “I can pre-
view the dynamic presentations instantly, with basically no waiting
time required.”

Expressiveness. Overall, participants unanimously agreed on
the expressiveness of our tool. First, all participants highlighted
the value of the preserved pattern. P5 remarked, “I like the pat-
terns it contains; it is just what we need for effective communication.”
Similarly, P6 mentioned, “I favor the ’emphasis’ pattern the most;
it brings the code snippets, user annotations, visual animations, and
narrations into a cohesive whole.” Second, participants concurred
that this dynamic presentation efficiently conveys analytical pro-
cesses within notebooks. P1 expressed, “I’m really into dynamic
presentations. They’ve got the advantages of both screen recordings
and slides, but reduce the manual efforts.” Adding to this sentiment,
P3 stated, “I think screen recording is really troublesome, and I have

to talk through it all and then edit it. The narrative summary and
generation of the tool is expressive to me.” Third, multiple partic-
ipants emphasized the importance of quickly assessing whether
their intention made sense or not. NotePlayer offered a unique way
to streamline content creation through the use of preset settings.
As noted by P8, “Sometimes I am not sure whether to use position,
color, or animation to convey the dynamic process... it can be hard
to think of, I just want to emphasize some code snippet.” For data
analysts, effectively communicating information takes precedence
over special effects.

Flexibility. Over half of the participants commended the flex-
ibility of our tool in creating Jupyter videos. P4 highlighted the
freedom the tool provides for adding and editing user annotations,
contrasting it with previous tools that required constant switch-
ing between editing interfaces and notebooks. Similarly, P10 was
impressed by the scene organization and the design script, which fa-
cilitated the reuse of streaming, thereby enhancing the tool’s utility.
Additionally, P5 remarked, “With LLM’s support, I can easily refine
the narrations, which are flexibly linked with specific code snippets
and annotations, all defined together as a scene.”

Suggestions. During our study, participants highlighted a few
areas whereNotePlayer could potentially enhance tomake the video
creation process more adaptable and user-friendly. First, the current
linear presentation adheres to the sequence of scenes, reflecting the
inherently linear nature of the video’s structure. However, some
participants expressed a desire to adjust the logic flow representa-
tion from linear to a tree structure. P8 noted, “It’s fine to have the
logic go step by step, but some code does similar things and the tree
structure really helps me understand the flow better.” Second, several
participants voiced a desire to incorporate a timeline feature for
more granular control over the streaming content. As pointed out
by P12, “A timeline feature, similar to that in Adobe Premiere Pro,
could be more beneficial, allowing for a quick overview of the total
duration of each element within one scene.” Last, some participants
mentioned their interest in experimenting with a wider range of an-
imations. As stated by P11, “Trying different animations in dynamic
presentations could be pretty fun.”

8 DISCUSSION AND LIMITATION
In this section, we reflect on the design, implementation, and eval-
uation of NotePlayer, and explore potential research avenues and
future directions.

8.1 Extend to Multifaceted Authoring Scenarios
While the user study revealed positive feedback regarding the us-
ability of NotePlayer, its design may not fully accommodate the
diverse authoring scenarios. Originally conceived as a plugin, tech-
nical constraints and the need for enhanced convenience, such
as simplified positioning and pop-up effects, led us to develop an
interface integrated with Jupyter Lab. Our plan includes reinte-
grating the generated dynamic presentations back into the raw
code cells embedded in the output cells, ensuring a seamless experi-
ence within the notebook environment. This approach allows users
to view streaming of smaller scenes if they have questions about
specific code cells. Second, our assumption regarding the work-
flow—that users have pre-organized and optimized their notebook

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Yang Ouyang, Leixian Shen, Yun Wang, andQuan Li

Figure 9: Assessment of our system in terms of Usefulness (Q1-Q3), Ease of Use (Q4-Q7), Satisfaction (Q8-Q11). The middle
column shows the detailed questions. The right column displays the average and standard deviations.

before creating a dynamic presentation—may be overly simplistic.
Previous research suggests that selecting and organizing notebook
cells is a complex process, indicating the need for our tool to in-
clude functionalities that better support these tasks. Third, our tool
currently lacks complete user control over all design aspects, such
as animation styles and annotation colors. While only a few partic-
ipants raised this issue in our user study, the majority found the
provided options sufficient for emphasizing key points and facili-
tating communication. Moving forward, we aim to introduce more
personalized settings and multimodel interactions to enhance the
videos’ appeal and stylistic diversity, catering to a wider range of
users [57, 71].

Furthermore, extending tutorials to other domains is an excit-
ing prospect, as demonstrated by Chi’s work [15], which high-
lights the need to customize tutorial tools for specific domains.
NotePlayer enhances programming tutorials by merging code with
video, automating narration, and integrating interactivity. Simi-
larly, DemoCut [15] automates editing for physical tutorials using
user annotations and visual effects, significantly reducing manual
effort. While both tools streamline tutorial creation, NotePlayer ex-
cels in digital interactivity, whereas DemoCut enhances continuous
physical actions. Developing these tutorials requires a clear struc-
ture and engaging content, though their technical requirements
and solutions differ. Nevertheless, methodologies from different
domains can inform and enhance each other, offering avenues to
explore [19]. For instance, the emphasis on tutorial videos across
various fields can differ, enabling us to investigate and experiment
on how diverse designs impact learners’ views of usage patterns and
result in improved learning results. Additionally, in data analysis
scenarios that heavily rely on Excel, NotePlayer could dynamically
present and narrate Excel-based processes, including cases where
complex formulas or codes are used for analysis within Excel [8].
Moreover, certain outputs generated by our tool, organized through

a cell-by-cell division process [38, 68, 83], can seamlessly integrate
into PowerPoint, Keynote, and Google Slides presentations. Further-
more, key interpreters, animations, and narrations are envisioned
as potential future plugins, with the prospect of embedding them
into IDEs like Visual Studio Code [6].

8.2 Serve as a Complement Format
Tutorial videos provide an additional layer of support, effectively
demystifying complex topics, increasing engagement, and offering
flexible learning options. However, it’s crucial to acknowledge that
video-based learning may not suit all learners, as noted by Wells’s
work [76]. Our intention is not to replace traditional approaches
but to supplement them. We also recognize the substantial value
and widespread use of traditional screen recording in educational
settings, training programs, and online learning [1, 42]. Traditional
screen recording significantly enhances instructor presence and
helps bridge the gap between educators and learners in tutorial
videos [31]. It allows for the detailed capture of desktop actions,
facilitating hands-on teaching activities like live coding. This aids
in the clear demonstration of new technologies to student [5, 18].

Our focus lies in providing an intuitive and efficient solution
tailored for data analysts, specifically designed for scenarios in-
volving the exchange of analytical processes. Conventional screen
recording formats may not always cater effectively to this audience.
Significantly, our approach draws inspiration from conventional
screen recording practices. We assimilate and integrate discerned
patterns (refer to section 4.3) from these methods to enhance our
content delivery. Our narrative styles analyzed in section 4 also
align with the elements that support video editing as outlined in
prior studies [15, 80]. In fact, this taxonomy can enhance users’
viewing experiences by helping them quickly locate and skip irrel-
evant information based on the category and type, as indicated by
these studies.We can further enhance our system by adding features

NotePlayer: Engaging Jupyter Notebooks for Dynamic Presentation of Analytical Processes UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

like Opening/Closing or self-promotion type narrative information
to accommodate users with diverse information needs and navi-
gation preferences [79]. By doing this, we expect video creators
to have more control, allowing them to make informed decisions
and better serve as a complementary format [29]. Furthermore, our
user study revealed that participants readily comprehend the work-
flow and identified patterns within our tool, finding them intuitive
and familiar (refer to section 7.2.4). Looking ahead, our objective
is to incorporate more advantages of traditional screen recording
into our tool, aiming to enhance its expressiveness. This entails en-
riching videos with personalized and captivating elements [45, 54],
and embracing innovative presentation styles such as Learning
Glass [16].

8.3 Incorporate LLM Assistance
We employed LLMs (refer to section 6.3.2) to assist in generating
logic flow and creating narrations. On one hand, the logic flow con-
tent generated consistently proved accurate, delivering significant
value to participants in our user study. Conversely, our approach to
generating narrations, which aimed to align with user intentions,
also garnered positive feedback during the study. Despite their
positive performance, current LLMs are constrained by inherent
limitations. These include inconsistency in outputs across differ-
ent iterations and issues with generating inaccurate or fabricated
information (hallucinations) [27, 28]. It may be prudent to imple-
ment a narration revision record to monitor changes. Moreover,
although users have the option to refine narrations and transition
from a declarative to an interactive question-and-answer format,
two participants specifically expressed a desire to present notebook
narrations in their own voice or style. This preference underscores
the necessity for more personalized narration options, such as fine-
tuning the model using materials provided by users themselves,
tailored to individual preferences [26].

8.4 Limitations
Our work has several limitations. First, our user study involved a
limited number of participants, underscoring the need for a larger,
crowdsourced study to comprehensively evaluate the usability of
our tool. Additionally, the absence of a baseline in our study for
comparison is noteworthy. While participant feedback indicated
satisfactory communication of their analytical processes through
streaming, a quantitative comparison could offer deeper insights
into these initial findings. Second, in our study, we examined es-
sential design considerations based on our formative study and
content analysis. It is important to recognize that these consid-
erations serve as foundational guidelines to assist data analysts
in video production and do not constitute an exhaustive list. Al-
though we analyzed 38 videos and identified three distinct patterns,
varying scenarios may necessitate more nuanced strategies to ef-
fectively address their specific requirements. For instance, code
cells dedicated to displaying results should prioritize highlighting
these outcomes, while those involved in data manipulation may re-
quire additional emphasis to enhance the explanation and guidance
provided for these segments. Moreover, while our tool currently
excels in illustrating the analytical process, it lacks capabilities
for hands-on teaching scenarios where progressive code display

is essential. To address this, we plan to enhance our tool by intro-
ducing features that allow for the customization and selection of
specific code cells, as well as progressive code display for focused
presentations. These improvements will enhance the versatility and
effectiveness of code displays across various use cases. Addition-
ally, incorporating recommendation features based on customer
feedback can significantly enhance the quality of tutorial videos.
We plan to conduct a user study to gather insights on customer
satisfaction and the learning experience with our methods [81].
By using statistical analysis to identify trends, we aim to provide
personalized guidance, which could greatly increase both customer
satisfaction and engagement.

9 CONCLUSION AND FUTUREWORK
This study offers valuable insights into the authoring of video tuto-
rials within Jupyter notebooks, focusing on the analytical process.
We introduce NotePlayer as a solution to overcome the challenges
faced by users in this context. Through an extensive formative study
and content analysis, we have identified significant patterns and
obstacles in the creation workflows, underscoring the necessity for
innovative tools to improve user experience and communication.
NotePlayer represents a substantial advancement in this domain by
seamlessly integrating video segments with notebook cells, thus
enabling more engaging and flexible communication of analyses.
Our user study further validates the effectiveness of NotePlayer,
highlighting its benefits while also pinpointing areas for refinement.
Moving forward, there are several avenues for future exploration
and enhancement. Incorporating user feedback to expand features,
such as enhancing editing capabilities and providing personalized
options, could augment both utility and usability. Moreover, con-
ducting long-term evaluations in real-world settings could yield
deeper insights into its practical applications.

ACKNOWLEDGMENTS
We thank all our participants for their time and valuable input.
We would also like to thank our reviewers whose insightful com-
ments have led to a great improvement of this paper. This work
is supported by grants from the National Natural Science Foun-
dation of China (No. 62372298), the Shanghai Frontiers Science
Center of Human-centered Artificial Intelligence (ShangHAI), and
the Key Laboratory of Intelligent Perception and Human-Machine
Collaboration (ShanghaiTech University), Ministry of Education.

REFERENCES
[1] M’hammed Abdous andMiki Yoshimura. 2010. Learner outcomes and satisfaction:

A comparison of live video-streamed instruction, satellite broadcast instruction,
and face-to-face instruction. Computers & education 55, 2 (2010), 733–741.

[2] Gsap animation platform. 2023. https://greensock.com/gsap/.7.
[3] Lingfeng Bao, Zhenchang Xing, Xin Xia, and David Lo. 2018. VT-Revolution:

Interactive programming video tutorial authoring and watching system. IEEE
Transactions on Software Engineering 45, 8 (2018), 823–838.

[4] Lorena A Barba, Lecia J Barker, Douglas S Blank, Jed Brown, Allen B Downey,
Timothy George, Lindsey J Heagy, Kyle T Mandli, Jason K Moore, David Lippert,
et al. 2019. Teaching and learning with Jupyter. Recuperado: https://jupyter4edu.
github. io/jupyter-edu-book (2019), 1–77.

[5] Carlos Bernal-C’ardenas, Nathan Cooper, Kevin Moran, Oscar Chaparro, Andrian
Marcus, and D. Poshyvanyk. 2020. Translating Video Recordings of Mobile App
Usages into Replayable Scenarios. 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE) (2020), 309–321. https://doi.org/10.1145/3377811.
3380328

https://greensock.com/gsap/.7
https://doi.org/10.1145/3377811.3380328
https://doi.org/10.1145/3377811.3380328

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Yang Ouyang, Leixian Shen, Yun Wang, andQuan Li

[6] Sufyan bin Uzayr. 2022. Mastering Visual Studio Code: A Beginner’s Guide. CRC
Press.

[7] Melissa Bowles-Terry, M. Hensley, and L. Hinchliffe. 2010. Best Practices for
Online Video Tutorials: A Study of Student Preferences and Understanding.
Communications in Information Literacy 4 (2010), 17–28. https://doi.org/10.
15760/COMMINFOLIT.2010.4.1.86

[8] Ronan T Bree and Gerry Gallagher. 2016. Using Microsoft Excel to code and
thematically analyse qualitative data: a simple, cost-effective approach. All Ireland
Journal of Higher Education 8, 2 (2016).

[9] K. Buffardi and Richert Wang. 2022. Integrating Videos with Programming
Practice. Proceedings of the 27th ACM Conference on on Innovation and Technology
in Computer Science Education Vol. 1 (2022). https://doi.org/10.1145/3502718.
3524778

[10] Julie Campbell and Richard E Mayer. 2009. Questioning as an instructional
method: Does it affect learning from lectures? Applied Cognitive Psychology: The
Official Journal of the Society for Applied Research in Memory and Cognition 23, 6
(2009), 747–759.

[11] Souti Chattopadhyay, Zixuan Feng, Emily Arteaga, Audrey Au, Gonzalo Ramos,
Titus Barik, andAnita Sarma. 2023. Make ItMake Sense! Understanding and Facili-
tating Sensemaking in Computational Notebooks. arXiv preprint arXiv:2312.11431
(2023).

[12] Souti Chattopadhyay, Ishita Prasad, Austin Z Henley, Anita Sarma, and Titus
Barik. 2020. What’s wrong with computational notebooks? Pain points, needs,
and design opportunities. In Proceedings of the 2020 CHI conference on human
factors in computing systems. 1–12.

[13] Hao Cheng, Junhong Wang, Yun Wang, Bongshin Lee, Haidong Zhang, and
Dongmei Zhang. 2022. Investigating the role and interplay of narrations and
animations in data videos. In Computer Graphics Forum, Vol. 41. Wiley Online
Library, 527–539.

[14] Fanny Chevalier, Melanie Tory, Bongshin Lee, Jarke vanWijk, Giuseppe Santucci,
Marian Dörk, and Jessica Hullman. 2018. From analysis to communication:
Supporting the lifecycle of a story. In Data-Driven Storytelling. AK Peters/CRC
Press, 151–183.

[15] Pei-Yu Chi, Joyce Liu, Jason Linder, Mira Dontcheva, Wilmot Li, and Bjoern
Hartmann. 2013. Democut: generating concise instructional videos for physi-
cal demonstrations. In Proceedings of the 26th annual ACM symposium on User
interface software and technology. 141–150.

[16] Ronny C Choe, Zorica Scuric, Ethan Eshkol, Sean Cruser, Ava Arndt, Robert
Cox, Shannon P Toma, Casey Shapiro, Marc Levis-Fitzgerald, Greg Barnes, et al.
2019. Student satisfaction and learning outcomes in asynchronous online lecture
videos. CBE—Life Sciences Education 18, 4 (2019), ar55.

[17] Victoria Clarke and Virginia Braun. 2017. Thematic analysis. The journal of
positive psychology 12, 3 (2017), 297–298.

[18] Paul Daniels. 2009. Technically speaking : Screen recording software for creating
instructional material. (2009). https://doi.org/10.29140/jaltcall.v5n2.82

[19] Adam G Emerson, Shreyosi Endow, and Cesar Torres. 2024. Anther: Cross-
Pollinating Communities of Practice via Video Tutorials. In Proceedings of the
2024 ACM Designing Interactive Systems Conference. 1991–2005.

[20] Philip J Guo, Juho Kim, and Rob Rubin. 2014. How video production affects
student engagement: An empirical study of MOOC videos. In Proceedings of the
first ACM conference on Learning@ scale conference. 41–50.

[21] Jesse Harden. 2023. Exploring and Evaluating the Potential of 2D Computational
Notebooks. InCompanion Proceedings of the 2023 Conference on Interactive Surfaces
and Spaces. 97–99.

[22] Jesse Harden, Elizabeth Christman, Nurit Kirshenbaum, John Wenskovitch, Jason
Leigh, and Chris North. 2022. Exploring organization of computational notebook
cells in 2d space. In 2022 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 1–6.

[23] Andrew Head, Fred Hohman, Titus Barik, Steven M Drucker, and Robert DeLine.
2019. Managing messes in computational notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. 1–12.

[24] Andrew Head, Jason Jiang, James Smith, Marti A Hearst, and Björn Hartmann.
2020. Composing flexibly-organized step-by-step tutorials from linked source
code, snippets, and outputs. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 1–12.

[25] Project Jupyter Home. 2023. https://jupyter.org/.
[26] Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-Peng Lim, Roy Ka-Wei

Lee, Lidong Bing, and Soujanya Poria. 2023. Llm-adapters: An adapter fam-
ily for parameter-efficient fine-tuning of large language models. arXiv preprint
arXiv:2304.01933 (2023).

[27] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian
Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023. A
survey on hallucination in large language models: Principles, taxonomy, chal-
lenges, and open questions. arXiv preprint arXiv:2311.05232 (2023).

[28] Ziwei Ji, YU Tiezheng, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. 2023.
Towards mitigating LLM hallucination via self reflection. In The 2023 Conference
on Empirical Methods in Natural Language Processing.

[29] Haojian Jin, Yale Song, and Koji Yatani. 2017. Elasticplay: Interactive video
summarization with dynamic time budgets. In Proceedings of the 25th ACM
international conference on Multimedia. 1164–1172.

[30] DaYe Kang, Tony Ho, Nicolai Marquardt, Bilge Mutlu, and Andrea Bianchi. 2021.
Toonnote: Improving communication in computational notebooks using interac-
tive data comics. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems. 1–14.

[31] Seanan Kelly and Charles Banaszewski. 2018. Using Screen Recording Platforms
to Increase Instructor Presence in an Online Classroom. eLearn Mag. 2018 (2018),
11. https://doi.org/10.1145/3302261.3236715

[32] Mary Beth Kery and Brad A Myers. 2018. Interactions for untangling messy
history in a computational notebook. In 2018 IEEE symposium on visual languages
and human-centric computing (VL/HCC). IEEE, 147–155.

[33] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E John, and Brad A
Myers. 2018. The story in the notebook: Exploratory data science using a literate
programming tool. In Proceedings of the 2018 CHI conference on human factors in
computing systems. 1–11.

[34] Kandarp Khandwala and Philip J Guo. 2018. Codemotion: expanding the design
space of learner interactions with computer programming tutorial videos. In
Proceedings of the Fifth Annual ACM Conference on Learning at Scale. 1–10.

[35] Ada S Kim and Amy J Ko. 2017. A pedagogical analysis of online coding tutorials.
In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. 321–326.

[36] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason
Grout, Sylvain Corlay, et al. 2016. Jupyter Notebooks-a publishing format for
reproducible computational workflows. Elpub 2016 (2016), 87–90.

[37] Sean Kross and Philip J Guo. 2019. Practitioners teaching data science in industry
and academia: Expectations, workflows, and challenges. In Proceedings of the
2019 CHI conference on human factors in computing systems. 1–14.

[38] Haotian Li, Lu Ying, Haidong Zhang, Yingcai Wu, Huamin Qu, and Yun Wang.
2023. Notable: On-the-fly Assistant for Data Storytelling in Computational Note-
books. In Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems. 1–16.

[39] Yanna Lin, Haotian Li, Leni Yang, Aoyu Wu, and Huamin Qu. 2023. Inksight:
Leveraging sketch interaction for documenting chart findings in computational
notebooks. IEEE Transactions on Visualization and Computer Graphics (2023).

[40] Shaofeng Lu, Ying Cheng, Xiaoyang Wang, Yang Du, and Eng Gee Lim. 2017.
Exploring the effectiveness of student-generated video tutorials in electronic
lab-based teaching. In 2017 IEEE Frontiers in Education Conference (FIE). IEEE,
1–4.

[41] Arnold M Lund. 2001. Measuring usability with the use questionnaire12. Usability
interface 8, 2 (2001), 3–6.

[42] Nicole Luongo. 2015. Missing the chalkboard: Using screencasting in the online
classroom. Computers in the Schools 32, 2 (2015), 144–151.

[43] Laura MacLeod, Andreas Bergen, and Margaret-Anne Storey. 2017. Documenting
and sharing software knowledge using screencasts. Empirical Software Engineer-
ing 22 (2017), 1478–1507.

[44] Blaine HM Mooers. 2021. Modernizing computing by structural biologists with
Jupyter and Colab.

[45] Caroline EMorton, Sohag N Saleh, Susan F Smith, Ashish Hemani, AkramAmeen,
Taylor D Bennie, and Maria Toro-Troconis. 2016. Blended learning: how can we
optimise undergraduate student engagement? BMC medical education 16 (2016),
1–8.

[46] Alok Mysore and Philip J Guo. 2017. Torta: Generating mixed-media gui and
command-line app tutorials using operating-system-wide activity tracing. In
Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology. 703–714.

[47] Keith J O’Hara, Doug Blank, and James Marshall. 2015. Computational notebooks
for AI education. (2015).

[48] OpenAI. 2024. Prompt engineering. https://platform.openai.com/docs/guides/
prompt-engineering/prompt-engineering.

[49] Adalbert Gerald Soosai Raj, Jignesh M Patel, Richard Halverson, and Erica Rosen-
feld Halverson. 2018. Role of live-coding in learning introductory programming.
In Proceedings of the 18th koli calling international conference on computing edu-
cation research. 1–8.

[50] Dhivyabharathi Ramasamy, Cristina Sarasua, Alberto Bacchelli, and Abraham
Bernstein. 2023. Visualising data science workflows to support third-party note-
book comprehension: an empirical study. Empirical Software Engineering 28, 3
(2023), 58.

[51] Adam Rule, Ian Drosos, Aurélien Tabard, and James D Hollan. 2018. Aiding
collaborative reuse of computational notebooks with annotated cell folding.
Proceedings of the ACM on Human-Computer Interaction 2, CSCW (2018), 1–12.

[52] Adam Rule, Aurélien Tabard, and James D Hollan. 2018. Exploration and expla-
nation in computational notebooks. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. 1–12.

https://doi.org/10.15760/COMMINFOLIT.2010.4.1.86
https://doi.org/10.15760/COMMINFOLIT.2010.4.1.86
https://doi.org/10.1145/3502718.3524778
https://doi.org/10.1145/3502718.3524778
https://doi.org/10.29140/jaltcall.v5n2.82
https://jupyter.org/
https://doi.org/10.1145/3302261.3236715
https://platform.openai.com/docs/guides/prompt-engineering/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering/prompt-engineering

NotePlayer: Engaging Jupyter Notebooks for Dynamic Presentation of Analytical Processes UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

[53] Robab Saadatdoost, Alex Tze Hiang Sim, Hosein Jafarkarimi, and Jee Mei Hee.
2016. Understanding the Setting of a MOOC: A Journey into Coursera. Interna-
tional Journal of Information and Communication Technology Education (IJICTE)
12, 1 (2016), 77–98.

[54] Marija Sablić, Ana Mirosavljević, and Alma Škugor. 2021. Video-based learning
(VBL)—past, present and future: An overview of the research published from
2008 to 2019. Technology, Knowledge and Learning 26, 4 (2021), 1061–1077.

[55] Martin Schwichow, Corinne Zimmerman, Steve Croker, and Hendrik Härtig.
2016. What students learn from hands-on activities. Journal of research in science
teaching 53, 7 (2016), 980–1002.

[56] Murray Shanahan, Kyle McDonell, and Laria Reynolds. 2023. Role play with
large language models. Nature 623, 7987 (2023), 493–498.

[57] Leixian Shen, Enya Shen, Yuyu Luo, Xiaocong Yang, Xuming Hu, Xiongshuai
Zhang, Zhiwei Tai, and Jianmin Wang. 2023. Towards Natural Language Inter-
faces for Data Visualization: A Survey. IEEE Transactions on Visualization and
Computer Graphics 29, 6 (2023), 3121–3144.

[58] Leixian Shen, Yizhi Zhang, Haidong Zhang, and Yun Wang. 2024. Data Player:
Automatic Generation of Data Videos with Narration-Animation Interplay. IEEE
Transactions on Visualization and Computer Graphics 30, 1 (2024), 109–119.

[59] Pelle Snickars and Patrick Vonderau. 2009. The youtube reader. Kungliga bib-
lioteket.

[60] Clive Thompson. 2011. How Khan Academy is changing the rules of education.
Wired magazine 126 (2011), 1–5.

[61] Rebecca Tiarks and Walid Maalej. 2014. How does a typical tutorial for mobile
development look like?. In Proceedings of the 11th Working Conference on Mining
Software Repositories. 272–281.

[62] Adiy Tweissi. 2016. The effects of embedded questions strategy in video among
graduate students at a middle eastern university. Ph. D. Dissertation. Ohio Univer-
sity.

[63] Julia Wagemann, Federico Fierli, Simone Mantovani, Stephan Siemen, Bernhard
Seeger, and Jörg Bendix. 2022. Five guiding principles to make jupyter notebooks
fit for earth observation data education. Remote Sensing 14, 14 (2022), 3359.

[64] April YiWang, AnantMittal, Christopher Brooks, and Steve Oney. 2019. How data
scientists use computational notebooks for real-time collaboration. Proceedings
of the ACM on Human-Computer Interaction 3, CSCW (2019), 1–30.

[65] April Yi Wang, Dakuo Wang, Jaimie Drozdal, Michael Muller, Soya Park, Justin D
Weisz, Xuye Liu, Lingfei Wu, and Casey Dugan. 2022. Documentation matters:
Human-centered ai system to assist data science code documentation in com-
putational notebooks. ACM Transactions on Computer-Human Interaction 29, 2
(2022), 1–33.

[66] April Yi Wang, Zihan Wu, Christopher Brooks, and Steve Oney. 2020. Callisto:
Capturing the" Why" by Connecting Conversations with Computational Narra-
tives. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. 1–13.

[67] Chen-Wei Wang. 2019. Creating Tutorial Materials as Lecture Supplements by
Integrating Drawing Tablet and Video Capturing/Sharing. In Proceedings of the
8th Computer Science Education Research Conference. 1–8.

[68] Fengjie Wang, Yanna Lin, Leni Yang, Haotian Li, Mingyang Gu, Min Zhu, and
Huamin Qu. 2024. OutlineSpark: Igniting AI-powered Presentation Slides Cre-
ation from Computational Notebooks through Outlines. In Proceedings of the CHI
Conference on Human Factors in Computing Systems. 1–16.

[69] Fengjie Wang, Xuye Liu, Oujing Liu, Ali Neshati, Tengfei Ma, Min Zhu, and Jian
Zhao. 2023. Slide4N: Creating Presentation Slides from Computational Notebooks
with Human-AI Collaboration. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems. 1–18.

[70] Jiawei Wang, Tzu-yang Kuo, Li Li, and Andreas Zeller. 2020. Assessing and restor-
ing reproducibility of Jupyter notebooks. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering. 138–149.

[71] Yun Wang, Zhitao Hou, Leixian Shen, Tongshuang Wu, Jiaqi Wang, He Huang,
Haidong Zhang, and Dongmei Zhang. 2023. Towards Natural Language-Based Vi-
sualization Authoring. IEEE Transactions on Visualization and Computer Graphics
29, 1 (2023), 1222 – 1232.

[72] YunWang, Leixian Shen, Zhengxin You, Xinhuan Shu, Bongshin Lee, John Thomp-
son, Haidong Zhang, and Dongmei Zhang. 2024. WonderFlow: Narration-Centric
Design of Animated Data Videos. IEEE Transactions on Visualization and Com-
puter Graphics (2024), 1–15.

[73] Zijie J Wang, Katie Dai, and W Keith Edwards. 2022. Stickyland: Breaking the
linear presentation of computational notebooks. In CHI Conference on Human
Factors in Computing Systems Extended Abstracts. 1–7.

[74] Thomas Weeks and Jennifer Putnam Davis. 2017. Evaluating best practices for
video tutorials: A case study. Journal of Library & Information Services in Distance
Learning 11, 1-2 (2017), 183–195.

[75] Nathaniel Weinman, Steven M Drucker, Titus Barik, and Robert DeLine. 2021.
Fork it: Supporting stateful alternatives in computational notebooks. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–12.

[76] Jason Wells, Robert Mathie Barry, and Aaron Spence. 2012. Using video tutorials
as a carrot-and-stick approach to learning. IEEE transactions on education 55, 4
(2012), 453–458.

[77] John Wenskovitch, Jian Zhao, Scott Carter, Matthew Cooper, and Chris North.
2019. Albireo: An interactive tool for visually summarizing computational note-
book structure. In 2019 IEEE visualization in data science (VDS). IEEE, 1–10.

[78] Shir Yadid and Eran Yahav. 2016. Extracting code from programming tutorial
videos. Proceedings of the 2016 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (2016). https:
//doi.org/10.1145/2986012.2986021

[79] Saelyne Yang, Sangkyung Kwak, Tae Soo Kim, and Juho Kim. 2022. Improving
Video Interfaces by Presenting Informational Units of Videos. CHI’22 Extended
Abstracts. Association for Computing Machinery (2022).

[80] Saelyne Yang, Sangkyung Kwak, Juhoon Lee, and Juho Kim. 2023. Beyond
Instructions: A Taxonomy of Information Types in How-to Videos. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems. 1–21.

[81] Saelyne Yang, Jisu Yim, Aitolkyn Baigutanova, Seoyoung Kim, Minsuk Chang,
and Juho Kim. 2022. SoftVideo: Improving the Learning Experience of Soft-
ware Tutorial Videos with Collective Interaction Data. In Proceedings of the 27th
International Conference on Intelligent User Interfaces. 646–660.

[82] Yue Yu, Leixian Shen, Fei Long, Huamin Qu, and Hao Chen. 2024. PyGWalker:
On-the-fly Assistant for Exploratory Visual Data Analysis. In Proceedings of IEEE
Visualization and Visual Analytics, IEEE VIS’24. 1–5.

[83] Chengbo Zheng, Dakuo Wang, April Yi Wang, and Xiaojuan Ma. 2022. Telling
stories from computational notebooks: Ai-assisted presentation slides creation
for presenting data science work. In Proceedings of the 2022 CHI Conference on
Human Factors in Computing Systems. 1–20.

https://doi.org/10.1145/2986012.2986021
https://doi.org/10.1145/2986012.2986021

UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Yang Ouyang, Leixian Shen, Yun Wang, andQuan Li

A PROMPT DESIGN
For these two tasks, we adhere to the following prompt engineering principles proposed by OpenAI [48]:
(1) Include details in your query to get more relevant answers. By explicitly listing the key considerations, steps to complete the task,

and output requirements in the task description, we assist the model in understanding and executing the task more accurately.
(2) Ask the model to adopt a persona. We explicitly specify the role of the model in the prompt, aiding the model in better understanding

the task’s context and requirements, thereby providing more accurate and relevant answers. Through persona setting, the model can
resonate better with the task’s content and demands, enhancing the effectiveness and quality of task execution.

(3) Use delimiters to clearly indicate distinct parts of the input. We employ clear delimiters and headings, such as “Key Considerations”,
and “Steps to Complete the Task”, in the prompt. This aids the model in understanding and organizing the input information more clearly,
thereby improving task efficiency and accuracy.

(4) Specify the steps required to complete a task. We explicitly list the specific steps required to complete the task in the prompt, such as
“read and understand the sentences”. This provides clear operational guidance to the model, aiding in enhancing task execution efficiency
and quality.

The detailed prompts designed for interaction with GPT-4 are presented below.

A.1 Logic Flow Generation

{
"role": "system", "content":
"""

Task Details
** Objective **:
You are a code analyst. Your task is to analyze the logic flow within a series of notebook cells to

construct a comprehensive representation of the computational logic. This involves identifying
the purpose and functionality of each cell , the inputs it relies on, and the outputs it generates
.

**Key Considerations **:
- Understand the specific role of each notebook cell within the overall computational process.
- Identify the inputs required by each cell and the outputs it produces.
- Recognize any dependencies between cells , noting how the output from one cell might serve as input

to another.

** Steps to Complete the Task **:
1. Examine each notebook cell to discern its primary function and role in the notebook 's logic flow.
2. Catalog the inputs each cell uses , which may include data files , variables from previous cells , or

user inputs.
3. Determine the outputs each cell generates , such as data transformations , visualizations , or

results.
4. Construct a logic flow representation , organizing this information into a structured format.

** Output Requirements **:
- Provide the logic flow representation in JSON format.
- Represent each cell as an object within the JSON structure , including the following key -value pairs

:
- 'id ': A unique identifier for each cell (starting from 0, incrementing by 1 for each subsequent

cell).
- 'description ': A brief explanation of the cell's purpose and functionality.
- 'inputs ': A list of the inputs the cell uses.
- 'outputs ': A list of the outputs the cell produces.

** Attention **:
Ensure that the JSON representation accurately reflects the sequence and dependencies of the notebook

cells , offering clear insights into the notebook 's computational logic.

Output Example
```
[
{"id": 0, "description ": "Load dataset", "inputs ": ["data.csv"], "outputs ": [" raw_data "]},



NotePlayer: Engaging Jupyter Notebooks for Dynamic Presentation of Analytical Processes UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

{"id": 1, "description ": "Clean data", "inputs ": [" raw_data"], "outputs ": [" cleaned_data "]},
...
]
```
"""

}

A.2 Narration Generation

{
"role": "system", "content":
"""

Task Details
** Objective **:
As a code_interpreter , your mission is to generate narrations for notebook cells , particularly

focusing on user -highlighted code snippets (" emphasis" elements) and their corresponding
annotations. A key part of your role is to weave these individual narrations into a coherent
overall narrative that reflects the interconnected functionality of the notebook cells.

**Key Considerations **:
- Integrate user -highlighted code snippets and annotations into the narrations , providing depth and

insight into specific functionalities.
- Ensure coherence among cell narrations , understanding the function of each cell in relation to

others , to maintain a seamless narrative flow across the notebook.
- Reflect both the technical essence of each cell and the user's perspective , enhancing the narrative

with insights into why certain code snippets are emphasized.

** Inputs for Each Cell **:
- **Code Snippet **: The specific portion of code highlighted by the user as significant.
- ** Annotation **: The user's explanation for highlighting this snippet , offering additional context

or importance.

** Steps to Complete the Task **:
1. For each notebook cell , identify the emphasized code snippet(s) and the corresponding user

annotations.
2. Craft a detailed narration for the cell that not only explains its specific functionality but also

incorporates the user's emphasis , providing a richer understanding of its role.
3. In generating narrations , consider the functions of adjacent cells to ensure that your narrative

offers a coherent explanation of how each cell contributes to the notebook 's overall logic flow.
4. Assemble the individual narrations into a structured format that reflects the interconnectedness

and sequence of the notebook cells , enhancing narrative flow.

** Output Requirements **:
- Narrations should be formatted in JSON , with each object representing a cell's narration and

including:
- 'id ': The unique identifier for the cell.
- 'narration ': The cell's detailed explanation , integrating the emphasized code snippets and

annotations.
- 'inputs ': The emphasis elements and annotations guiding the narration.

- The narrations must collectively offer a coherent narrative across the notebook , elucidating the
interconnected functionality of the cells.

** Attention **:
It's crucial that the narrations not only individually explain the functionality of each cell but

also collectively contribute to a coherent narrative of the notebook 's computational logic. This
involves understanding the broader context in which each cell operates and how they interrelate.

Output Example
```
[

{



UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA Yang Ouyang, Leixian Shen, Yun Wang, andQuan Li

"id": 0,
"narration ": "This cell initiates our data analysis by loading data from 'data.csv ', focusing on

the 'read_csv ' function. Highlighted by the user , 'read_csv ' is crucial for efficient data
loading , preparing us for subsequent preprocessing steps.",

"inputs ": {
"code_snippet ": "data.read_csv('file.csv ')",
"annotation ": "Essential for initial data loading ."

}
},
{

"id": 1,
"narration ": "Following data loading , this cell applies 'dropna ()' to clean the dataset , a step

emphasized by the user for its importance in ensuring data quality. This cleaning is
foundational for the analysis performed in later cells.",

"inputs ": {
"code_snippet ": "data.dropna ()",
"annotation ": "Crucial for maintaining data integrity , leading to reliable analysis ."

}
}

]
```
"""

}

	Abstract
	1 Introduction
	2 Related Work
	2.1 Programming Tutorial Videos
	2.2 Storytelling with Computational Notebooks

	3 FORMATIVE STUDY
	3.1 Participants and Procedure
	3.2 Data Analysis
	3.3 Key Findings

	4 Content Analysis
	4.1 Categorizing Narration
	4.2 Summary of Behaviors
	4.3 Correlation Between Narrations and Behaviors

	5 Design Considerations
	6 NotePlayer
	6.1 Overview
	6.2 Interactive Modules
	6.3 Computational Engines

	7 Evaluation
	7.1 Usage Scenario
	7.2 User Study

	8 Discussion and Limitation
	8.1 Extend to Multifaceted Authoring Scenarios
	8.2 Serve as a Complement Format
	8.3 Incorporate LLM Assistance
	8.4 Limitations

	9 Conclusion and Future Work
	Acknowledgments
	References
	A Prompt Design
	A.1 Logic Flow Generation
	A.2 Narration Generation

